# HYDROGEOLOGICAL INPUT AND ASSESSMENT OF THE GROUNDWATER POTENTIAL FOR THE WATER SUPPLY TO THE KRANZBERG TO TSUMEB RAILWAY LINE PHASE ONE: KRANZBERG TO OTJIWARONGO





OTTO JANSEN VAN VUUREN DYNAMIC WATER RESOURCES MANAGEMENT PO BOX 23629 WINDHOEK

# CONTENTS

| INTRODUCTION                                                     | 1  |
|------------------------------------------------------------------|----|
| Objectives                                                       | 1  |
| APPROACH AND METHODOLOGY                                         | 1  |
| DESKTOP STUDY                                                    | 1  |
| Boreholes                                                        | 2  |
| Aquifers exploited for bulk groundwater abstraction              | 6  |
| Kranzberg Aquifer                                                | 6  |
| Spes Bona Aquifer                                                | 8  |
| Omaruru River Aquifer (ORA)                                      | 8  |
| Otjiwarongo Marble Aquifer (OMA)                                 | 11 |
| Aquifer summary                                                  | 13 |
| Kranzberg Aquifer                                                | 13 |
| Spes Bona Aquifer                                                | 13 |
| Omaruru River Aquifer                                            | 13 |
| Otjiwarongo Marble Aquifer                                       | 13 |
| Other groundwater abstraction                                    | 15 |
| Rest water level                                                 | 16 |
| Water Quality Analyses                                           | 18 |
| Geology                                                          | 20 |
| HIGH RISK POLLUTION AREAS                                        | 23 |
| POTENTIAL IMPACTS                                                | 25 |
| Unsustainable use of groundwater sources                         | 25 |
| Deterioration in the ambient groundwater quality                 | 26 |
| Reduction of the infiltration capacity of the alluvial sediments | 27 |
| MITIGATION MEASURES                                              | 28 |
| Reducing groundwater availability due to over abstraction        | 28 |
| Deterioration in the ambient groundwater quality                 | 29 |
| Reduction of the infiltration capacity of the alluvial sediments | 29 |
| AREAS WITH POTENTIAL TO DEVELOP FOR GROUNDWATER ABSTRACTION      | 32 |
| ADMINISTRATIVE, LEGAL AND REGULATORY REQUIREMENTS                | 32 |
| Laws and key aspects                                             | 32 |
| The Namibian Constitution                                        | 32 |
| Environmental Management Act                                     | 32 |
| Environmental Management Act                                     | 32 |

| Nature Conservation Ordinance 4 of 1975                                     | 33 |
|-----------------------------------------------------------------------------|----|
| Petroleum Products and Energy Act                                           | 33 |
| The Water Act                                                               | 33 |
| Water Resources Management Act                                              | 33 |
| Public and Environmental Health Act                                         | 33 |
| Labour Act                                                                  | 34 |
| National Heritage Act 27 of 2004                                            | 34 |
| Hazardous Substances Ordinance                                              | 34 |
| Soil Conservation Act                                                       | 34 |
| Water and Sanitation Policies                                               | 34 |
| National Water Policy (NWP) adopted in 2000                                 | 34 |
| Water Supply and Sanitation Sector Policy (WSASP) which was adopted in 2008 | 34 |
| National Sanitation Strategy of 2009, which is based on this WSASP policy   | 34 |
| BASIN MANAGEMENT COMMITTEES                                                 | 35 |
| REFERENCES                                                                  | 36 |

# INTRODUCTION

**Urban Green cc** appointed Dynamic Water Resources Management (**DWRM**) to conduct an assessment of the groundwater potential to supply in the water demand of the Kranzberg to Tsumeb railway line project, and to consider the potential impact of groundwater abstraction on the environment.

The project will be completed in two phases:

- Phase 1 Kranzberg to Otjiwarongo
- Phase 2: Otjiwarongo to Tsumeb

This report is submitted for Phase 1 of the project.

# Objectives

The works shall cover, but is not necessarily limited to the following:

- To investigate the groundwater potential based on existing boreholes located in close proximity to the railway line;
- To investigate the groundwater potential based on the prevailing geology and associated hydrogeology in close proximity to the railway line;
- To consider the potential impact of groundwater abstraction on the environment, and to propose mitigation measures to negate these impacts;
- To compile a written report on the findings.

# APPROACH AND METHODOLOGY

A short narrative of the approach and methodology followed are as follows:

- Desktop study, evaluating the groundwater potential from existing boreholes and based on the prevailing geology;
- Identify and recommend most viable areas to be investigated for establishing groundwater abstraction points;
- Identify and recommend existing boreholes that could possibly be used to supply water [note that the use of such boreholes will eventually depend on negotiations for the use with the borehole owner(s)];
- Assess the potential impact of groundwater abstraction on the environment and propose mitigation measures;
- Compilation and submission of a report.

# DESKTOP STUDY

Information required to complete the groundwater potential assessment were:

- Railway centreline (already provided);
- Water demand;
- Minimum water quality standard for the required water use;
- Maximum distance from the railway centreline that must be assessed in terms of the groundwater potential.

The railway centreline was provided, but none of the other required information were given to **DWRM**. It was therefore considered reasonable to assume that the groundwater potential as determined during this study should rather inform the

demand-side, while a general overview of the groundwater quality is given to possibly exclude specific areas of poor water quality.

The groundwater potential was assessed within a distance of 10 km either side of the railway line, i.e., all boreholes captured in the GROWAS database and located within 10 km from the railway centreline were included in the evaluation.

# Boreholes

The desktop study evaluated the groundwater potential along the railway line, based on available information from the DWA database, relating to the following parameters:

- Borehole yields
- Rest water levels
- Groundwater quality (TDS, sulphate, nitrate)

It must be emphasised that the database is not complete, i.e., not all existing boreholes are captured in the database; hence an evaluation based on the database boreholes may not give an accurate reflection of the true situation. It was also realised that the information captured in the database are not accurate, and **DWRM** does not take responsibility for incorrect data. For example, for many boreholes where no rest water levels were recorded, it is captured as 0 m; similarly, depths of some boreholes are obviously incorrect. These obviously incorrect data were not used in the evaluation, especially in contouring the rets water level. The borehole data are summarised in **Appendix 1**.

All boreholes recorded in the database that fall within 10 km either side of the railway centreline were filtered, and further grouped in terms of their yield to give a clear indication of the groundwater potential in terms of the yield distribution that can be expected along the railway line. The locations and yields of these boreholes are shown in **Maps 1 to 3**.

It must also be borne in mind that, if boreholes are in existence for a long period of time, or has not been in operation for some time, the captured borehole data may not reflect the actual and current borehole capacities.

A statistical analysis of the borehole yields is shown in **Table 1** below.

|                                                    | Numbers | Percentage |
|----------------------------------------------------|---------|------------|
| Number of boreholes                                | 593     | 100.0%     |
| Yield >10m³/h                                      | 38      | 6.4%       |
| Yield >5m <sup>3</sup> /h and <10m <sup>3</sup> /h | 37      | 6.2%       |
| Yield <5m <sup>3</sup> /h                          | 233     | 39.3%      |
| No yield recorded                                  | 285     | 48.1%      |
| Totals                                             | 593     | 100.0%     |

# Table 1 Borehole yield statistics: Kranzberg to Otjiwarongo

An overview of the yields already gives an indication of the generally low groundwater potential to supply in construction water, where high yielding boreholes are required to supply in large volumes of water on a daily basis. Only 12.6% of the database-recorded boreholes yield more than  $5 \text{ m}^3/\text{h}$ , suggesting that a large number of boreholes will be required (in a small area) to supply in the water demand.



MAP 1 Locations and yields of all the database-recorded boreholes located between Kranzberg and Otjiwarongo and within 10 km from the railway centreline







MAP 3 Locations and yields of all the database-recorded boreholes located between Omaruru and Otjiwarongo and within 10 km from the railway centreline

#### Aquifers exploited for bulk groundwater abstraction

A few well-studied aquifers are present in the study area that either supplied water in the past, or are still supplying water, for bulk abstraction to supply in municipal water demands. These aquifers are shortly discussed below.

#### Kranzberg Aquifer

Public streams are considered water protection areas (previously referred to as water control areas), and groundwater abstraction from water protection areas is regulated by the Water Act of 1956. The Kranzberg Aquifer is therefore in a water protection area, and according to the Water Act any person abstracting groundwater from a water controlled area needs to apply for a permit to abstract water and must comply with the permit conditions as specified.

To the northeast of Usakos, an extensive calcrete plain has developed towards Karibib. Typically, a thin cover of oxidised alluvium obscures the solid geology across a gently undulating inter-mountain plain. The Khan, Aroab and Kranzberg Rivers are incised into this plain and contain a variable thickness of alluvium representing the weathering products of surrounding areas of high relief. The calcrete plain immediately to the northeast of Usakos has been shown to be underlain by a paleo river channel running sub-parallel to the existing course of the Kranzberg River, the so-called Kranzberg Aquifer (see **Figure 1**).

The calcrete-capped, alluvium filled paleo-river channel striking northeast from the confluence of the Aroab and Kranzberg Rivers differs from the aquifer hosted in the Khan River alluvials in the sense that the alluvium is partially cemented. Intergranular cementation by calcium carbonate has taken place in distinct, discrete horizons intercalated with completely unconsolidated layers.

The unconsolidated alluvial layers are capable of containing and transmitting significant quantities of groundwater. Due to the layered nature of the aquifer system the groundwater is semi-confined. The aquifer is reportedly separated by a hydraulic discontinuity into two compartments, i.e., Compartment A and Compartment B. The alleged compartmentation is however neither supported by the existence of a lithological barrier nor a geophysically proven structural feature, and it is therefore doubted if this discontinuity really exists. Water level graphs of a number of monitoring and production boreholes penetrating both "compartments" of the Kranzberg Aquifer show almost identical behaviour, which is further indication that there is only one, hydraulically connected, Kranzberg Aquifer.

The combined groundwater reserves of Compartments A and B in the Kranzberg Aquifer were calculated as 0.649 Mm<sup>3</sup>. A recharge figure could not be calculated due to a lack of runoff data. A re-evaluation of previous studies concluded that the Municipal sources tap the same aquifer as the NamWater Kranzberg boreholes, therefore the two borehole groups should be treated as one. The sustainable yield of the Municipal and Kranzberg sources combined is approximately 0.270 Mm<sup>3</sup>/a, with the Kranzberg Aquifer's sustainability estimated at 0.108 Mm<sup>3</sup>/a.



Figure 1 Lay-out of the Kranzberg Aquifer, including the Usakos municipal boreholes (adapted from NamWater, 2000)

#### Spes Bona Aquifer

Public streams are considered water protection areas (previously referred to as Groundwater Control Areas), and groundwater abstraction from Water protection areas is regulated by the Water Act of 1956. The Seps Bona Aquifer is located in the Khan River some 30 km north of Karibib, and in a Water protection area. According to the Water Act any person abstracting groundwater from a water controlled area needs to apply for a permit to abstract water and must comply with the permit conditions as specified.

The scheme consisted of 6 production boreholes drilled in 1966, but it was decommissioned around 2003 when the Swakoppoort Dam became the source of its water supply, and water was piped in from the Swakoppoort Dam.

Due to a water supply shortfall experienced at the Karibib Water Supply Scheme, caused by a significant drop of the water level and the deterioration of water quality of the Swakoppoort Dam, five replacement boreholes were drilled in the Spes Bona wellfield at the end of 2016. *Drilling of the replacement boreholes in the Spes Bona wellfield was unsuccessful, as all but one of the boreholes were dry.* Alluvial sediments were intercepted in all the boreholes drilled, comprising medium to coarse grained sand.

As with most alluvial aquifers, aquifer recharge depends largely on flood events. During and immediately after flooding water levels rise rapidly, and then decrease steadily, but continuously, until the next flood event.

#### Omaruru River Aquifer (ORA)

The Omaruru River Aquifer is proclaimed as a Water Control Area and according to the Water Act any person abstracting groundwater from a water controlled area needs to apply for a permit to abstract water and must comply with the permit conditions as specified.

The only exploited groundwater resources in the immediate area of Omaruru for large-scale abstraction such as municipal or irrigation water supply, are the alluvial beds of the ephemeral Omaruru River. The alluvium deposits form a phreatic aquifer, the dimensions of which are controlled by the configuration of the river channels.

The Omaruru Municipality operates its own bulk water supply scheme. All of its water is abstracted from the Omaruru River by means of borehole installations. Water is abstracted from four boreholes in the immediate vicinity of Omaruru, and also from the three boreholes of the Kranzberg scheme east of the town.

In general, it is known that bedrock rises immediately below the road bridge at Omaruru town. From this bedrock high the Omaruru River Aquifer (ORA) stretches upstream for a distance of about 30 km, with a second rise in bedrock at a distance of about 600 m upstream from section 6C. A bedrock high is also noted at a distance of about 3 000 m upstream of section 3D, and these two geohydrological compartments are referred to as Compartments 1 and 2 (see **Figure 2**). The ORA was previously divided into 4 compartments, namely compartments A, B, C & D. The Municipality abstracts groundwater from compartments A & B only (i.e., the downstream portion or Compartment 1). In this report, reference is made to Compartments 1 and 2, as well as to compartments A, B, C and D. Previous hydrogeological studies concluded that the total volume of groundwater stored in the alluvium of the ORA at full capacity (assuming that the average water level is approximately 2 m below surface) is about 5.78 Mm<sup>3</sup>. Due to dead storage in the aquifer, it is assumed that only 80% of the water can be effectively abstracted, which reduces the total water available for abstraction to 4.62 Mm<sup>3</sup>. *This volume of stored reserves is the total for the aquifer upstream of Omaruru over a stretch of 30 km and is only available when the aquifer is at full capacity, which is assumed to be at a regional water level of 2 m below surface.* The stored reserve is extremely sensitive, and the volume of groundwater changes significantly during any one year. From **Figure 2** it can be seen that, in the rainy season (January to April or quarter 1), the aquifer is replenished during runoff events. During the rest of the year groundwater is utilised and lost *via* subsurface throughflow, and the reserves decrease accordingly.



Figure 2 Total volume of groundwater available, and changes in stored reserves, in the Omaruru River Aquifer (Alexander and Becker, 2000)

The average recharge calculated for Compartment 1 (Compartments A and B), which is being exploited by the Omaruru and Kranzberg boreholes, is in the order of  $1 \text{ Mm}^3/a$ , which is also an estimate of the long-term sustainable yield of this part of the aquifer. The recharge in the upstream Compartment 2 (Compartments C and D), which is utilised by various other permit holders was calculated to be in the order of  $1.5 \text{ Mm}^3/a$ . The total recharge to the ORA, which can be regarded as an estimate of the sustainable yield of the aquifer, was thus calculated to be  $2.5 \text{ Mm}^3/a$ .

A study by NamWater in 2000 found that, based on available groundwater abstraction permit data, a total of 2.61  $Mm^3/a$  was allocated for abstraction from the ORA: 1.0  $Mm^3/a$  to the Municipality and 1.61  $Mm^3/a$  other persons amounting to the 2.61  $Mm^3/a$ , thus exceeding the estimated annual recharge.

The extent of the Omaruru River Aquifer is shown in Figure 3.



Figure 3 Location and Extent of the Omaruru River Aquifer (Red Shows Compartments A to D; Yellow Shows Compartments 1 and 2)

#### **Otjiwarongo Marble Aquifer (OMA)**

Prior to 1991, Otjiwarongo was supplied with water from boreholes drilled in the socalled Omatjenne aquifer compartment. As the water demands of the town increased, the sustainable yield of the Omatjenne compartment was exceeded and water levels dropped sharply. Groundwater investigations were undertaken in the north easterly extensions of the OMA and further reserves, classified as 6 additional aquifer compartments were identified, and the wellfield was extended. The sheme lay-out is shown in **Figure 4**.

The aquifer extends from Omatjenne, 20 km to the west of Otjiwarongo, to some 100 km in a north easterly direction towards Otavi. This area is generally of low relief. The marble formation forms low, linear ridges. Surface drainage is poorly developed and nowhere deeply incised, and drains into the Ugab River. The area is underlain by schists, marbles and other carbonate formations of the Swakop Group of the Damara Sequence. The groundwater potential of fractured aquifers in the Swakop Group is generally low. However, the carbonates (marbles and limestones) have a moderate groundwater potential and at properly selected targets such as fracture zones and karstified contact zones, even high yields can be encountered. The fractured and karstified marble band of the Karibib Formation comprises the OMA, which occurs as a gently lunging synclinal structure, closing at Omatjenne and plunging to the northeast, forming two sub-parallel, steeply dipping limbs, some 10 to 15 km apart. The OMA is a well-defined geological and hydrogeological unit, with little leakage across the marble-schist contacts into the largely impermeable surrounding schist. Water is contained in solution cavities which are developed in the marble adjacent to the contacts and in faulted and fractured zones. Away from these features, the transmissivity and storativity are very low. These also decrease with depth below the vertical interval where fluctuations in the water table have enhanced solution effects.

The Omatjenne – Otjiwarongo Scheme is the only part of the ORA that fall within the scope for the Kranzberg-Otjiwarongo portion of the greater project. It consists of 9 boreholes (as well as an earth dam), with the boreholes located either side of the C38 Otjiwarongo – Outjo tar road. The recommended yield of the 9 boreholes of the Omatjenne – Otjiwarongo Scheme, which are between 30 m and 210 m deep, vary between 10 m<sup>3</sup>/h and 45 m<sup>3</sup>/h, with a total recommended yield of 205 m<sup>3</sup>/h.

For completes sake, the Omarassa-Otjiwarongo Scheme is shortly discussed as well. The scheme consists of two parallel pipeline arms with a northeast – south west orientation linking up boreholes in the OMA, corresponding with the two subparallel limbs of the OMA. The scheme is supplied from 13 boreholes which are between 63 m and 126 m deep, and the yields vary between 2.5 m<sup>3</sup>/h and 25 m<sup>3</sup>/h, with a total recommended yield of 205.5 m<sup>3</sup>/h. Due to scheme insufficiency, the water supply scheme was again extended through the so-called Phase 5 extension. The Omarassa Phase 5 investigations culminated in the successful completion of three production boreholes, increasing the total abstraction with another 120 m<sup>3</sup>/h.

The Bulk Water Master Plan for the North West of Namibia (completed in 2009) determined that the peak month demand of consumers in the Otjiwarongo area already exceeds the recommended borehole yield of the Omatjenne and Omarassa Schemes.



Figure 4 Layout of the Omatjenne – Otjiwarongo and Omarassa – Otjiwarongo Schemes (NamWater, 1998)

#### Aquifer summary

In summary it can be stated that, of the four aquifers discussed above, the Spes Bona Aquifer is unsustainable, Kranzberg and Omaruru Aquifers are used to its maximum capacity, while the Otjiwarongo Aquifer may have potential for additional groundwater abstraction.

#### Kranzberg Aquifer

The Kranzberg Aquifer has an estimated stored reserve of 0.649  $Mm^3$ , while its sustainable yield was estimated at 0.270  $Mm^3/a$ . (0.090  $Mm^3/a$  for the Kranzberg Aquifer and 0.179  $Mm^3/a$  for the Municipal sources). NamWater abstraction form the Kranzberg Aquifer is in excess of 0.1  $Mm^3/a$ .

There is thus no surplus groundwater available from the Kranzberg Aquifer.

# Spes Bona Aquifer

The latest drilling results proved to be unsuccessful as all but one of the boreholes were dry. The scheme was decommissioned and is currently not used for bulk water supply.

Despite the unsuccessful drilling, the Spes Bone Aquifer do have potential to supply in construction water. However, borehole yields are generally less than 5  $m^3/h$ , and a number of boreholes will be required to supply construction water.

# Omaruru River Aquifer

The total recharge to the ORA, which can be regarded as an estimate of the sustainable yield of the aquifer, was calculated to be  $2.5 \text{ Mm}^3/a$ . A study by NamWater in 2000 found that, based on available groundwater abstraction permit data, a total of 2.61 Mm<sup>3</sup>/a was allocated for abstraction from the ORA: 1.0 Mm<sup>3</sup>/a to the Municipality and 1.61 Mm<sup>3</sup>/a other persons amounting to the 2.61 Mm<sup>3</sup>/a, thus exceeding the estimated annual recharge.

#### **Otjiwarongo Marble Aquifer**

# The Omatjenne – Otjiwarongo Scheme is the only part of the ORA that fall within the scope for the Kranzberg-Otjiwarongo portion of the greater project.

The recommended yield of the Omatjenne – Otjiwarongo Scheme is 205 m<sup>3</sup>/h, with individual borehole yields varying between 10 m<sup>3</sup>/h and 45 m<sup>3</sup>/h.

It appears that the OMA is thus capable to host high-yielding boreholes that can supply in the construction water demand. However, the Bulk Water Master Plan for the North West of Namibia determined that the peak month demand of consumers in the Otjiwarongo area exceeds the recommended borehole yield of the Omatjenne and Omarassa Schemes.

All four of these aquifers are located within either proclaimed water protection areas, or exploit river alluvials, thus in public streams and law also water protection areas. The proclaimed water protection areas are shown in **Figure 5** on the next page.

According to the Water Act, permits are therefore required to 1) drill boreholes, and 2) abstract groundwater for any use other than domestic use.



Figure 5 Proclaimed water protection areas between Kranzberg and Otjiwarongo. Note that all rivers are by law also water protection areas.

# Other groundwater abstraction

Other than groundwater abstraction to supply water to municipalities, groundwater is used for domestic and stock watering purposes on commercial farmland.

These "farm boreholes" are, with exception, mostly low yielding, tapping localised secondary aquifers in hard rock environments. In many cases, these boreholes are also located close to ephemeral rivers, and the isolated aquifers tapped by these boreholes are dependent on flooding during rainy seasons to provide recharge and maintain the sustainability to these boreholes.

Where these aquifers hosting farm boreholes are not dependent on river run-off for recharge, percolation during rainfall events and subsurface flow and leakage from adjacent hard rock provides the recharge water.

The characteristics and behaviour of the prevailing geohydrological environment is hugely influenced and dictated by the geology, and the predominant rock types determine a geological formation's capacity to host groundwater. It also determines if groundwater can move "easily" through the rock types or not, i.e., it determines the presence and yield of a groundwater resource. The matrix rock or host rock type thus plays a very significant role in the presence and rate of groundwater flow. Unless the host rock possesses good (secondary) porosity, the recharge will be limited. To understand the occurrence of groundwater it is therefore necessary to understand the prevailing geohydrological characteristics associated with the geology.

Certain geological processes could change a geological environment to enhance the hydrogeological characteristics of the geological environment by creating secondary porosity. For example, fracturing of a totally impervious rock can result in very porous fractures, which could host large and high-yielding aquifers; impervious rock that is well-jointed, or possesses solution features, can similarly host large and high-yielding aquifers. It is however very important to bear in mind that such high-yielding aquifers will not be sustainable, often even in the short term, if they are not regularly recharged, and / or if they are not "large in size".

A rock is aquiferous, i.e., it can contain a groundwater resource, when:

- it has voids (the porosity of the rock);
- these voids are of sufficient size (at least a few fractions of millimetres thick or in diameter) and are connected to each other (the rock is then permeable);
- these voids contain water (they are said to be saturated with water), generally provided by percolation of precipitation, or by means of sub-surface throughflow.

As a result of the complexity of any hydrogeological environment, it is often found that adjacent aquifers are hydraulically poorly linked to one another, or not linked at all, meaning that the effect of abstraction on the groundwater reserve stored in the other, is only noticed after a while (which can in time be from days to years), or there is no effect at all. On the other hand, abstraction form an aquifer that is hydraulically well-connected to another aquifer may result in an almost immediate water table reaction in the other.

Due to a lack of knowledge and understanding of the hydrogeological processes, there is often a high level of animosity and opposition from farmers when it comes to abstraction of groundwater on their properties by an "outside party", and more so if large quantities of water is needed over a short time period, such as construction water.

# **Rest water level**

Of the 593 boreholes recorded in the database that is located within 10 km of the railway centre line, the water level of 297 boreholes (50.1%) is recorded as "0". Many of these are dry boreholes where there actually is no water level, but for many the water level is simply not available. For the remaining 296 boreholes (49.9%), water levels were recorded. It must be borne in mind that these water levels were taken at the time of drilling, and do not necessarily represent the current situation.

The deepest water level recorded is 100 m below ground level (mbgl). The borehole is located on farm Rodenhof some 20 km east-northeast of Kalkfeld, and is 139 m deep with a recorded yield of  $1.3 \text{ m}^3/\text{h}$ .

The shallowest water level recorded is 0.6 mbgl. The borehole is located in the Omaruru River some 5.5 km east of Omaruru, and is 16.4 m deep with a recorded yield of 18  $m^3/h$ .

The average water level (excluding al the zero-values) is 23.64 mbgl.

Map 6 shows the depth to the groundwater table is shown on the next page.



MAP 6 Depth to groundwater table / rest water level

# Water Quality Analyses

**Figures 6 to 8** below show water quality in terms of total dissolved solids (TDS), sulphate and nitrate respectively. The figures were scanned from the 1980 1:1 000 000 water quality maps of Namibia.

Areas where the water quality is poorer, are just south of Okanono siding, south and west of Norman siding, and between Avond- Erundu- and Paresis sidings. The TDS-value gets into the range from 3 001 ppm to 5 000 ppm.



Figure 6 Groundwater quality: Total Dissolved Solids along the railway line between Kranzberg and Otjiwarongo



Figure 7 Groundwater quality: Sulphate concentrations along the railway line between Kranzberg and Otjiwarongo



Figure 8 Groundwater quality: Nitrate concentrations along the railway line between Kranzberg and Otjiwarongo

# Geology

The assessment of the geological environment to identify the regional geology, and particularly relating to the groundwater potential, the 1:1 000 000 geological map of Namibia was used. In order to show it clearer, the geology is presented in two maps for the sections Kranzberg to Omaruru and Omaruru to Otjiwarongo respectively.

As stated earlier, the geology is one the most significant the determining factors relating to the occurrence of groundwater. The predominant rock types are:

#### Sedimentary rock: sand (alluvium), sandstone

Sand or alluvium possesses primary porosity, while sandstone can possess both primary and secondary porosity. The alluvium occurs in riverbeds, while sandstone is present in the Etendeka and Omingonde Formations just to the north of the Etiro siding. Sedimentary rocks generally have high groundwater potential

#### Igneous rock: granite

Granite possesses secondary porosity, and unless it is fractured and / or deeply weathered, it has very low groundwater potential. Granite is present over most of the area, but diminishes closer to Otjiwarongo.

#### Metamorphic rock: schist and limestone (marble)

Schist and marble possess secondary porosity. Schist has very low groundwater potential, even when fractured, as it weathers to clay, which has a very good water retention capacity and as a result do not transmit groundwater easily. If intruded by extensive vein quartz, which are fractured, schist can however yield quite productive aquifers, but sustainability is a real concern.

Inherently marble also has very low groundwater potential. However, if fractured or dissolution of the rock took place, marble can host moderate to very productive aquifers.

Schist is present extensively over most of the area, while marble is mostly limited to the Swakop Group between Kranzberg and Karibib, to the north of Omaruru and around Kalkfeld, while there is also some marble present in the Otjiwarongo area.

The nature of the geology suggests that groundwater abstraction from secondary aquifers in the hard rock may not have a major impact on the regional groundwater table, as most of the rock comprise of low porosity matrix rocks. The impacts will mostly be concentrated in the immediate vicinity of abstraction points. However, if there is hydraulic connectivity between different aquifers caused by fracturing, weathering or even jointing, preferential groundwater flow paths are created along which negative impacts of abstraction can migrate.

The alluvials are however a very sensitive geological environment with good hydraulic connectivity within layers, and extreme care must be taken when these are exploited for groundwater abstraction.

**Map 7** and **Map 8** show the geology between Kranzberg and Omaruru, and between Omaruru and Otjiwarongo respectively.



MAP 7 Geology between Kranzberg and Omaruru



MAP 8 Geology between Omaruru and Otjiwarongo

# HIGH RISK POLLUTION AREAS

Considering the hydrogeological environment, and more specifically the nature of the aquifers in the study area, there are three main types of areas that are prone to high pollution risk, namely:

- primary alluvial aquifers
- secondary aquifers where high-transmissivity preferential flow paths have been created through fracturing
- secondary limestone (marble) aquifers with solution features

The first two aquifer types are rather easy to identify as the rivers alluvials can be clearly seen and the fractures are mostly mapped and / or visible where it manifests on the ground. Although the marble itself is easily identifiable, those parts of marble formations that are actually good aquifers caused by solution features are unfortunately not that easily identifiable due to the lack of available hydrogeological information and the insufficiency of recorded borehole information.

The hydrogeological characteristics of these environments are a) usually high transmissivities and b) high storativity, i.e., in laymen's term, groundwater flows at a high rate through these aquifers, and the percentage of the rock volume available to store water in is high respectively.

The biggest concern is that, once a pollutant enters the groundwater in such aquifers, it spreads very rapidly through the aquifer, and it becomes almost impossible to remove such pollutants.

Where the above hydrogeological environments prevail, utmost care must therefore be taken to prevent and avoid causing pollution, or any negative impacts for that matter, to occur. Even more so, where a river flows over or along a fracture, extra care must be taken to prevent and avoid causing pollution.

The areas where primary river alluvial aquifers and fractures have been mapped are shown in **Map 9** on the next page.

NOTE: The rivers shown in **Map 9** are only those mapped on the 1:1 000 000 scale geological map of Namibia, and *it does not show all the rivers, irrelevant of their size*. **All rivers must be treated as potential high-risk pollution areas.** 



MAP 9 Areas with high pollution risk based on mapped rivers and fractures

# POTENTIAL IMPACTS

The prevailing groundwater environments and its characteristics comprise:

Primary alluvial aquifers

- shallow, fresh water aquifer(s) in the active river channels;
- bounded mostly by impermeable rocks;
- recharged continuously through subsurface groundwater throughflow and sporadically through direct recharge during flooding, and;

Secondary fractured aquifers

- groundwater discharging as springs or recharging adjacent aquifers;
- confined groundwater originating at distant recharge areas;
- seasonal direct recharged of fractures during and after rainfall events, and minimally through subsurface groundwater throughflow / leakage from adjacent groundwater sources in the host rock, and;

The potential negative impacts of construction work on the hydrogeological environment are related to either:

- Unsustainable use of groundwater sources (over-abstraction)
- Deterioration in the ambient groundwater quality
- Reduction of the infiltration capacity of the alluvial sediments

#### Unsustainable use of groundwater sources

The tell-tail sign of unsustainable groundwater use is a lowering of the water table over an aquifer. This is relatively easily identified in an alluvial aquifer that is rather homogenous within different layers where the hydraulic connectivity is high, but it is not that easily identified in hard rock (secondary) aquifers that are heterogeneous, and adjacent, close-by aquifers may not at all be hydraulically connected. In the former, if groundwater abstraction causes a drop in the water level, it is safe to conclude that the aquifer is unsustainably used (or mined). However, a drop in the water table in a secondary aquifer may only reflect what is happening in a small, localised area, possibly without having any impact on an adjacent, close-by aquifer.

Anticipating the effect of groundwater abstraction on the greater, regional groundwater environment is not possible considering the prevailing hydrogeological conditions, specifically the relevance of the prevailing geology and unknown-of geological structures such as possible fractures and / or joint systems (that have not been mapped) creating preferential groundwater flow paths; the distribution of boreholes within the hard rock areas, and; the lack of previous hydrogeological studies within the hard rock areas to derive baseline conditions from.

Deepening of water levels may lead to the drying up of boreholes and fountains, and the loss of organisms that lives in the groundwater. Vegetation may also be impacted through increased water stress, or even vegetation die-off, where such vegetation depends on groundwater. In terms of direct groundwater-related impacts, over abstraction may result in any, or all, of the following:

- Groundwater level drawdown and subsequent deepening of the water table.
- Reduction of natural groundwater discharges.
- Changes in groundwater flow patterns that can affect groundwater quality distribution in the subsurface.

There is a low probability of negative impacts being caused by over-exploitation (over-pumping) on the groundwater environment. Any such impacts will:

- be of medium-term extent;
- in all likelihood have low intensities;
- be of short to medium term duration, and;
- be of low to medium significance, even without mitigation measures.

#### Deterioration in the ambient groundwater quality

Groundwater pollution can be defined as the direct or indirect alteration of the physical, chemical or biological properties of a water resource so as to make it:

- less fit for any beneficial purpose for which it may reasonably be expected to be used, or
- harmful or potentially harmful
  - o to the welfare, health or safety of humans and animals;
  - o to any aquatic or non-aquatic organisms;
  - o to the resource quality; or
  - o to property.

Potential pollution sources could arise from:

- construction activities,
- spillage of hazardous substances,
- through leakage of sewage.

Groundwater may become polluted through point source and / or diffuse discharges such as dust, fuel or chemical spills. Petroleum products released to the environment general migrate through the soil *via* two pathways; bulk flow (infiltrating the soil under gravity) or capillary action (individual compounds dissolving into air or water). As the products migrate through the soil, small amounts thereof can be retained by soil particles, known as residual saturation. Residual saturation can potentially reside in the soil for years and act as a continuing source of contamination. Environmental waste protection protocols must be implemented to ensure that no environmental harm is caused, and that appropriate action is taken in any event of a point source and / or diffuse discharges occurring.

Construction activities will generate different types of solid wastes which can end up polluting run-off water if not properly managed. Additionally, spills and leaks may also occur from vehicles and heavy equipment used during the construction operations, which may result in soil contamination. The principal direct environmental impact of soil quality associated with the construction phase is the potential contamination from the following sources:

- spills or leaks from construction machinery
- waste generation / management
- accidental leaks

Although the above impact (i.e., soil contamination) will be localised within the spillage area, the potential migration of such contamination to aquifers may represent significant environmental risks. Considering the general high transmissivity of an alluvial aquifer in particular, it can unambiguously be stated that any surface pollution resulting in any pollutant ending up in the river sediments will enter the aquifer as soon as recharge water is available.

However, with proper waste management and spill prevention / control measures, these impacts could be controlled and minimized during the construction phase.

There is a low to medium probability of negative impacts being caused by the construction works on the groundwater environment, and more specifically on the groundwater quality. Any such impacts will, depending on the type of pollutant:

- be of immediate to local extent;
- in all likelihood have low to medium intensities;
- be of medium to long term duration, and;
- be of medium to high significance.

Hazardous pollutants such as hydrocarbons from fuel or oil spillages will:

- be of immediate to local extent;
- in all likelihood have medium to high intensities;
- be of long-term duration, and;
- be of high significance, even without mitigation measures,

as it can render part of an aquifer unsuitable for domestic consumption.

#### Reduction of the infiltration capacity of the alluvial sediments

During construction certain activities, such as grading, creates pollutants that can leave the site and harm the receiving environment. Sediment is one of the main pollutants of concern. Over a short period of time, construction sites can contribute more sediment than can be deposited naturally over several decades. The resulting siltation, along with the contribution of other pollutants from construction sites, can cause physical, biological, and chemical harm to catchments.

Erosion is a degenerating process that very often goes hand-in-hand with construction activities. Apart from the aesthetical aspects associated with erosion, it can cause indirect negative impacts where the eroded material is deposited. The best way to minimize the risk of creating erosion and sedimentation problems during construction is to disturb as little of the land surface as possible. Other effective erosion control measures include preserving existing vegetation where feasible and stabilising and re-vegetating disturbed areas as soon as possible. Disturbed and exposed areas are subject to wind erosion, sediment tracking and dust generation by construction equipment.

Dust generated during construction will result from clearing and earthworks, including trenching, levelling, bund construction (if / when applicable) and rehabilitation operations. The major dust sources will be from the movement of

vehicles over the cleared work areas and from vehicles transporting equipment to the work areas.

The occurrence and significance of the dust generation will depend upon meteorological and ground conditions at the time and location of activities. However, under normal meteorological conditions, dust impacts will be limited to within several hundred meters of the respective construction areas.

Large volumes of dust settling in river beds *may* result in the reduction of the infiltration capacity, especially through the top layer of the alluvial. This affect will be enhanced if the volume of recharge water is small, i.e., the flowing water does not have the energy to remove the dust layer.

There is a low probability of negative impacts being caused by (significant) dust generation on the groundwater environment. Any such impacts will:

- be of immediate extent;
- in all likelihood have low intensities;
- be of short term duration, and;
- be of low significance, even without mitigation measures.

#### MITIGATION MEASURES

#### Reducing groundwater availability due to over abstraction

Groundwater over abstraction can be defined as abstracting more than the natural inflow / recharge to the aquifer, thus groundwater outflow is greater than groundwater inflow. In order to prevent potential accusations of unsustainable groundwater use and associated depletion of groundwater reserves used for farming activities, hydrocensuses in every area targeted for establishing groundwater abstraction points for supply of construction water should be done. The locations of boreholes used for water supply must be surveyed, and the rest water levels in these boreholes must be measured and recorded.

Since *in situ* groundwater is an invisible source, sustainable exploitation thereof can only be observed through monitoring groundwater levels in conjunction with monitoring abstraction volumes and -rates. Water level reaction to both abstraction and possible direct recharge from percolation of rainfall and / or run-off in rivers must be monitored in order to provide early warning of impending impacts, in this instance both negative and positive impacts.

Unless a groundwater balance is established, thus providing an accurate estimation of the surplus volume of groundwater available for abstraction, managing groundwater's sustainable use is reactionary, i.e., one will only realise overabstraction occurs once the rest water levels start deepening. Therefore, in order to properly manage the groundwater abstraction to ensure sustainable use, the following measures must be implemented:

- A groundwater monitoring program whereby water levels and abstraction volumes and rates are measured and recorded frequently
- Manage demand and abstraction

- Reduce abstraction if over-abstraction becomes evident
- Implement water conservation measures
- Limit groundwater use to essential needs and improve efficiency in the use of groundwater to minimise effect on local availability
- Implement water conservation measures
- Regularly inspect all installations associated with groundwater abstraction and distribution to eliminate leaks which are wasting water

# Deterioration in the ambient groundwater quality

To limit the potential for spills or leaks from construction machinery and its resultant potential impact on the water quality, the following mitigation measures should be implemented:

- All reasonable measures must be taken to prevent spillage and leakage of materials likely to pollute any aquifer.
- Site storage and service areas in areas away from the alluvial sediments and / or drainage channels, or where fractures are known / mapped to occur.
- Storage areas for hazardous materials such as fuel and oil must be bunded.
- If a spill occurs, the contaminated soil must be removed immediately and disposed of at an appropriate disposal site.

To limit the potential for waste generation and its resultant potential impact on the water quality, the following mitigation measures should be implemented:

- Appropriate measures should be taken for the transportation, handling, storage and disposal of ALL waste.
- Provision must be made for adequate sanitary facilities and the workforce should not be allowed to discharge any untreated sanitary waste into the groundwater or any surface water course.

# Reduction of the infiltration capacity of the alluvial sediments

Dust and erosion control include practices that protects the soil surface and prevents soil particles from being detached. The best way to minimize the risk of creating erosion and sedimentation problems during construction is to disturb as little of the land surface as possible. Other effective erosion control measures include:

- Limit on-site vehicle speed
- Apply dust suppression to unpaved areas
- Limit or even prohibit activities during high winds
- Capture run-off water from the work area and adjacent lands where practical and possible
- Ensure adequate water flow by diverting flood prone watercourses for the duration of the work if needed during the rainy season
- Areas disturbed as part of construction activities (e.g., temporary access routes and vegetation clearing) should be protected from erosion and returned to a protected state after the disturbing activity is completed
- Temporary runoff and erosion control management plans should be created and implemented during construction phases

|                                                           | Potential impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level of significance                                                                                                                                                                                                                                | Mitigation measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Implementation                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                 |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEVEL OF SIGNIFICATION                                                                                                                                                                                                                               | พที่เมื่อสาวการเกิดสาวที่                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Who                                                                                                                                                                                                                        | How                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring                                                                                                                                                                                                                                      |  |
| Unsustainable<br>use of<br>groundwater<br>sources         | <ul> <li>Groundwater level drawdown<br/>and subsequent deepening of<br/>the water table.</li> <li>Reduction of natural<br/>groundwater discharges.</li> <li>Changes in groundwater flow<br/>patterns that can affect<br/>groundwater quality distribution<br/>in the subsurface</li> </ul>                                                                                                                                                                                                                                                                     | <ul> <li>low to medium<br/>significance, even<br/>without mitigation<br/>measures medium-<br/>term extent;</li> <li>in all likelihood have<br/>low intensities;</li> <li>short to medium term<br/>duration.</li> </ul>                               | <ul> <li>A groundwater monitoring program<br/>whereby water levels and<br/>abstraction volumes and rates are<br/>measured and recorded frequently</li> <li>Manage demand and abstraction</li> <li>Limit groundwater use to essential<br/>needs and improve efficiency in<br/>the use of groundwater to minimise<br/>effect on local availability</li> <li>Implement water conservation<br/>measures</li> <li>Regularly inspect all installations<br/>associated with groundwater<br/>abstraction and distribution to<br/>eliminate leaks which are wasting<br/>water</li> </ul>                                                                                               | <ul> <li>Environmental<br/>officer</li> <li>Site engineer</li> <li>Appoint and train a<br/>water works clerk<br/>who reports<br/>directly to a<br/>foreman or site<br/>engineer</li> </ul>                                 | <ul> <li>Identify<br/>monitoring<br/>boreholes</li> <li>Equip abstraction<br/>boreholes with<br/>flow meters</li> <li>Reduce<br/>abstraction if<br/>over-abstraction<br/>becomes evident</li> </ul>                                                                                                                                                                                    | <ul> <li>Measure water<br/>levels accurately<br/>and weekly in<br/>both monitoring<br/>and abstraction<br/>boreholes</li> <li>Measure<br/>abstracted<br/>volumes<br/>accurately and<br/>weekly</li> <li>Present data<br/>graphically</li> </ul> |  |
| Deterioration<br>in the ambient<br>groundwater<br>quality | <ul> <li>Alteration of the physical, chemical or biological properties of a water resource so as to make it:</li> <li>less fit for any beneficial purpose for which it may reasonably be expected to be used,</li> <li>harmful or potentially harmful         <ul> <li>to the welfare, health or safety of humans and animals;</li> <li>to any aquatic or non-aquatic organisms;</li> <li>to the resource quality;</li> <li>to property.</li> </ul> </li> <li>Spillage of hazardous substances</li> <li>spills or leaks from construction machinery</li> </ul> | <ul> <li>medium to high<br/>significance in all<br/>likelihood have low to<br/>medium intensities;</li> <li>medium to long term<br/>duration.</li> <li>high significance,<br/>even without<br/>mitigation measures<br/>immediate to local</li> </ul> | <ul> <li>All reasonable measures must be taken to prevent spillage and leakage of materials likely to pollute any aquifer.</li> <li>Site storage and service areas in areas away from the alluvial sediments and / or drainage channels, or where fractures are known / mapped to occur.</li> <li>Storage areas for hazardous materials such as fuel and oil must be bunded.</li> <li>If a spill occurs, the contaminated soil must be removed immediately and disposed of at an appropriate disposal site.</li> <li>Appropriate measures should be taken for the transportation, handling, storage and disposal of all waste.</li> <li>Provision must be made for</li> </ul> | <ul> <li>Project<br/>Management</li> <li>Site engineer</li> <li>Environmental<br/>officer</li> <li>Appoint and train a<br/>water works clerk<br/>who reports<br/>directly to a<br/>foreman or site<br/>engineer</li> </ul> | <ul> <li>Ensure vehicles,<br/>equipment and<br/>machinery are in<br/>good working<br/>order to minimize<br/>leaks of<br/>contaminants</li> <li>Keep spill kits at<br/>the work site to<br/>accelerate<br/>intervention in the<br/>event of spills or<br/>leaks</li> <li>Ensure trained<br/>personnel are<br/>available to<br/>intervene<br/>immediately in<br/>the event of</li> </ul> | <ul> <li>Conduct regular<br/>inspections of<br/>construction site<br/>for spills or leaks</li> <li>Analyse water<br/>quality of all<br/>nearby water<br/>sources after<br/>spills or leaks<br/>occurred</li> </ul>                              |  |
|                                                           | <ul> <li>waste generation /<br/>management</li> <li>accidental leaks</li> <li>Improper maintenance of<br/>vehicles, machinery and other<br/>motorised equipment</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>extent;</li> <li>in all likelihood have medium to high intensities;</li> <li>long-term duration.</li> </ul>                                                                                                                                 | adequate sanitary facilities and the<br>workforce should not be allowed to<br>discharge any untreated sanitary<br>waste into the groundwater or any<br>surface water course.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                            | accidental spills<br>or leaks                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |  |

# Table 2Summary of potential negative impacts and the proposed mitigation measures

| Reduction of<br>the infiltration<br>capacity of<br>the alluvial<br>sediments | <ul> <li>Dust generation</li> <li>Erosion</li> </ul> | <ul> <li>low significance,<br/>even without<br/>mitigation measures.</li> <li>immediate extent;</li> <li>in all likelihood have<br/>low intensities;</li> <li>short term duration.</li> </ul> | <ul> <li>Limit on-site vehicle speed</li> <li>Limit or even prohibit activities during high winds</li> <li>Capture run-off water from the work area and adjacent lands where practical and possible</li> <li>Ensure adequate water flow by diverting flood prone watercourses for the duration of the work if needed during the rainy season</li> </ul> | <ul> <li>Site engineer</li> <li>Environmental<br/>officer</li> <li>Appoint and train a<br/>water works clerk<br/>who reports<br/>directly to a<br/>foreman or site<br/>engineer</li> </ul> | <ul> <li>Approvidest<br/>suppression to<br/>unpaved areas</li> <li>Areas disturbed<br/>as part of<br/>construction<br/>activities (e.g.,<br/>temporary access<br/>routes and<br/>vegetation<br/>clearing) should<br/>be protected from<br/>erosion and<br/>returned to a<br/>protected state<br/>after the<br/>disturbing activity<br/>is completed</li> <li>Temporary runoff<br/>and erosion<br/>control<br/>management<br/>plans should be<br/>created and<br/>implemented<br/>during<br/>construction<br/>phases</li> <li>Conduct regular<br/>inspections of<br/>construction site<br/>for signs of<br/>erosion or soil<br/>degradation</li> </ul> |
|------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# AREAS WITH POTENTIAL TO DEVELOP FOR GROUNDWATER ABSTRACTION

The areas with the highest potential to supply in the construction water demand and develop for groundwater abstraction, and which can be identified from a "bird's-eye view", are unfortunately also the same areas with high risk to be polluted, namely the river alluvials and the fractures shown in **Map 9** on page 24.

However, these are not necessarily the only areas with good potential to host highyielding boreholes, **BUT** extensive hydrogeological remote sensing and field investigations, both reconnaissance and geophysical investigations, will be required to identify specific locations where new boreholes can be drilled.

Access onto privately owned land, and drilling boreholes on private property for groundwater abstraction, will require negotiations and agreements with individual land owners.

Where high-yielding boreholes are existing, use of such boreholes can also be negotiated with respective owners.

Another alternative is to obtain water from NamWater schemes, but this will most likely be a very expensive alternative.

# ADMINISTRATIVE, LEGAL AND REGULATORY REQUIREMENTS

To protect the environment and achieve sustainable development, projects, plans, and programmes considered to potentially have adverse impacts on the environment require an environmental assessment. The following legislation and agreements govern environmental assessment processes in Namibia and / or are relevant to the development.

#### Laws and key aspects

#### The Namibian Constitution

- Promote the welfare of people
- Incorporates a high level of environmental protection
- Incorporates international agreements as part of Namibian law

#### Environmental Management Act

Act No. 7 of 2007, Government Notice No. 232 of 2007

- Defines the environment
- Promotes sustainable management of the environment and the use of natural resources
- Establishes a process of assessment and control of activities with possible significant effects on the environment

# Environmental Management Act

Government Notice No. 28 to 30 of 2012

- Commencement of the Environmental Management Act
- List activities that require an environmental clearance certificate
- Provide Environmental Impact Assessment Regulations

# Nature Conservation Ordinance 4 of 1975

Including all amendments of Government Notices: 117 of 1976; 115 of 1978; 77 of 1985; 75 of 1987; 90 of 1988; 131 of 1996.

- Nature Conservation Amendment Ordinance 4 of 1977; 16 of 1980; 27 of 1986
- Nature Conservation Amendment Act: 6 of 1988; 17 of 1988; 31 of 1990; Act 5 of 1996.
- Consolidating and amending laws relating to the conservation of nature; the establishment of game parks and nature reserves; the control of problem animals; and to provide for matters incidental thereto
- Provides list of specially protected game, protected game (including birds) and huntable game (including birds)
- Provides a list protected species in annex 243.

# Petroleum Products and Energy Act

Act No. 13 of 1990, Government Notice No. 45 of 1990

- Regulates petroleum industry
- Makes provision for impact assessments
- Petroleum Products Regulations (Government Notice No. 155 of 2000)
- Prescribes South African National Standards (SANS) or equivalents for construction, operation and decommissioning of petroleum facilities (refer to Government Notice No. 21 of 2002)

# The Water Act

Act No. 54 of 1956

Remains in force until the new Water Resources Management Act comes into force.

- Defines the interests of the state in protecting water resources
- Controls water abstraction and the disposal of effluent
- Numerous amendments

# Water Resources Management Act

Act No. 11 of 2013.

Not in force yet.

- Provide for management, protection, development, use and conservation of water resources, including the role and function of basin management committees
- Prevention of water pollution and assignment of liability

# Public and Environmental Health Act

Act No. 1 of 2015, Government Notice No. 86 of 2015

- Provides a framework for a structured public and environmental health system, and for incidental matters
- Deals with Integrated Waste Management including waste collection, disposal and recycling; waste generation and storage; and sanitation.

# Labour Act

Act No 11 of 2007, Government Notice No. 236 of 2007

• Provides for Labour Law and the protection and safety of employees Labour Act, 1992: Regulations relating to the health and safety of employees at work (Government Notice No. 156 of 1997).

# National Heritage Act 27 of 2004

- Ensures the protection of cultural and archaeological sites.
- The Act requires the identification of cultural and archaeological sites within the study area, and registration and protection thereof.

# Hazardous Substances Ordinance

Ordinance No. 14 of 1974

- Applies to the manufacture, sale, use, disposal and dumping of hazardous substances as well as their import and export
- Aims to prevent hazardous substances from causing injury, ill-health or the death of human beings.

# Soil Conservation Act

Act No. 76 of 1969

• Aims to combat and prevent soil erosion, the conservation, improvement and manner of use of the soil and vegetation, and the protection of the water sources in Namibia

# Water and Sanitation Policies

The existing water and sanitation policies in place are:

#### National Water Policy (NWP) adopted in 2000

# Water Supply and Sanitation Sector Policy (WSASP) which was adopted in 2008

- Take steps to prevent "any public or private water on or under that land, including rainwater that falls on or flows over or penetrates such land" from being polluted.
- Require a permit for the disposal of effluent and industrial wastewater.
- Of particular concern is the prevention of surface- and groundwater pollution, therefore the collection, storage, disposal and re-use of sewage- and storm water is of utmost importance.

# National Sanitation Strategy of 2009, which is based on this WSASP policy.

In terms of the National Sanitation Strategy 2010/11 – 2014/15, a developer must put in place strategies:

- Guaranteeing safe and affordable sanitation, encouraging decentralised sanitation systems where appropriate.
- That should promote recycling through safe and hygienic recovery and use of nutrients, organics, trace elements, water and energy, and the safe disposal

of all human and other wastes, including sewage and industrial effluent, in an environmentally sustainable fashion.

#### **BASIN MANAGEMENT COMMITTEES**

In terms of the Water Resources Management Act, Act No. 11 of 2013, Government may "recognise a group of representatives of such institutions, stakeholders and persons who are organised or associated for the purpose of organising, planning or dealing with matters relating to the development, management, protection and enhancement of water resources in the basin or part of the basin, to be a basin committee for the purposes of this Act in furtherance of the Government's objective in achieving an integrated management of water resources."

The Omaruru River basin is one of the first in Namibia to establish a basin management committee, with a difficult balancing act to perform in a water resource that's already being utilised to its maximum. While the river basin itself is only forty to eighty kilometres wide, its aquifers are the main source of water for most of the 63 720 square kilometre Erongo Region, that contains one of the world's prime uranium deposits.

To balance water use, the basin committee is structured to represent all stakeholders such as local or regional authorities, conservancies, the business community, the mines, the farmers, the ministries and NamWater.

# REFERENCES

- 1. Alexander and Becker. Investigation into the Sufficiency of the Omaruru River Aquifer to Supply Omaruru Town. Unpublished report for the Omaruru Municipality by Alexander and Becker CC in conjunction with Namibia Water Corporation Ltd. September 2000.
- 2. Christelis, G, Struckmeier, W. Groundwater in Namibia: An explanation to the Hydrogeological Map. 2001.
- 3. Department of Water Affairs. GROWAS database.
- 4. Geological Survey of Namibia. 1:1 000 000 Geological Map of Namibia. 1980.
- 5. Geo Pollution Technologies (Pty) Ltd. Irrigation activities of Henning Crusher on farm Guinas-See 1403, Oshikoto Region, Environmental Assessment Scoping report. November 2019.
- 6. Mendelsohn J, Jarvis A, Roberts C and Robertson T. Atlas of Namibia: A Portrait of the Land and its People. 2010.
- NamWater. A Re-Assessment of the Marble Aquifer Potential and a Critical Review of Management and Operational Aspects. Unpublished report by the Geohydrology Division of the Namibia Water Corporation Ltd (NamWater). September 1998.
- 8. NamWater. Usakos Water Supply Scheme: Geohydrological Desk Study. File No. NWC-WR-USA-8/99-REP (Unpublished report). 2000.
- 9. Ruppel OC and Ruppel-Schlichting K(eds). Environmental Law and Policy in Namibia. 2011.
- 10. Van den Bosch, S. Running A Dry River, The Namibian. 28 August 2009.

yvall.

Otto Jansen van Vuuren S.Geo.Sci.Nam for Dynamic Water Resources Management

30 May 2022

Date

APPENDIX ONE

BOREHOLE DATA AS CAPTURED IN THE GROWAS DATABASE

|               |                  |                   | Denshala  |                   | Diamatan         | Dawth        | Rest water   | Initial viold |                     |
|---------------|------------------|-------------------|-----------|-------------------|------------------|--------------|--------------|---------------|---------------------|
| Map<br>number | Latitude<br>(°S) | Longitude<br>(°F) | status    | Location          | Diameter<br>(mm) | Deptn<br>(m) | level at     | $(m^3/h)$     | Elevation<br>(masl) |
| number        | (0)              | ( - )             | Status    |                   | ()               | (11)         | drilling (m) | (111711)      | (masi)              |
| 6231          | -20,399          | 16.6827           | not known |                   | 150              | 103.6        | 55.9         | 18.2          | 1580                |
| 86889         | -20.4055         | 16.6554           | not known |                   | 150              | 110          | 55           | 0             | 1453                |
| 6301          | -20.4123         | 16.6407           | not known | Hoasas            | 0                | 0            | 0            | 0             | 1462                |
| 68769         | -20.4125         | 16.641            | drilled   | Hoasis            | 0                | 0            | 66.85        | 0             | 1458                |
| 40414         | -20.413          | 16.639            | drilled   | Hoasis            | 200              | 92.5         | 0            | 0             | 0                   |
| 10662         | -20.4152         | 16.6389           | not known |                   | 200              | 143          | 66           | 10            | 1465                |
| 86901         | -20.4321         | 16.5671           | not known |                   | 150              | 91           | 68           | 1.8           | 1412                |
| 86900         | -20.4335         | 16.567            | not known |                   | 150              | 91           | 47           | 3.6           | 1412                |
| 16507         | -20.4348         | 16.584            | not known | Buffelshoek       | 200              | 186          | 80           | 30            | 1420                |
| 86902         | -20.4363         | 16.5684           | not known |                   | 0                | 128          | 73.15        | 8             | 1412                |
| 40413         | -20.438          | 16.574            | drilled   | Otjitazu - Kilo 9 | 110              | 142.58       | 0            | 0             | 0                   |
| 68770         | -20.4391         | 16.579            | drilled   | Kilo 9 - Otjitazu | 0                | 0            | 38.4         | 0             | 1416.94             |
| 37524         | -20.44132        | 16.5554           | drilled   | Farm Otjitazu     | 165              | 125          | 82           | 10            | 0                   |
| 10660         | -20.443          | 16.5776           | not known |                   | 203              | 150          | 45           | 27.3          | 1407                |
| 80544         | -20.4434         | 16.6725           | not known |                   | 0                | 0            | 0            | 0             | 1335                |
| 86898         | -20.444          | 16.6104           | not known |                   | 150              | 60           | 0            | 9.1           | 1440                |
| 9422          | -20.444          | 16.6104           | not known | Omatjenne         | 200              | 96.4         | 7            | 10.2          | 1440                |
| 22115         | -20.4454         | 16.5002           | not known |                   | 153              | 59.4         | 22.8         | 4.1           | 1378                |
| 29837         | -20.4455         | 16.503            | drilled   | Omatjenne         | 164              | 102          | 52.57        | 2.4           | 1378                |
| 86899         | -20.4464         | 16.6081           | not known |                   | 0                | 91           | 0            | 0             | 1440                |
| 29838         | -20.4488         | 16.5044           | not known | Omatjenne         | 160              | 90           | 34.47        | 0             | 1377.89             |
| 86906         | -20.4527         | 16.5611           | not known |                   | 150              | 110          | 36           | 1.4           | 1409                |
| 86892         | -20.4543         | 16.6979           | not known |                   | 150              | 73           | 37           | 0.5           | 1490                |
| 86891         | -20.4555         | 16.7048           | not known |                   | 150              | 107          | 21           | 9             | 1490                |
| 86890         | -20.4557         | 16.7032           | not known |                   | 150              | 71           | 0            | 4.2           | 1490                |
| 86897         | -20.4557         | 16.6152           | not known |                   | 150              | 76           | 0            | 1.8           | 1445                |
| 30484         | -20.4599         | 16.5415           | not known | Wesrand           | 150              | 75           | 0            | 0             | 1400                |
| 86513         | -20.4599         | 16.5415           | not known | Wesrand           | 150              | 65           | 0            | 0             | 1400                |
| 30483         | -20.4613         | 16.5446           | not known | Wesrand           | 150              | 95           | 0            | 0             | 1403                |
| 86512         | -20.4613         | 16.5446           | not known | Wesrand           | 150              | 90           | 0            | 0             | 1403                |
| 86903         | -20.4624         | 16.5833           | not known |                   | 150              | 63           | 27           | 2             | 1415                |
| 86904         | -20.4633         | 16.5815           | not known |                   | 150              | 49           | 36           | 1.4           | 1415                |

| 80542 | -20.4639 | 16.6359 | not known |           | 150 | 152   | 27    | 0.8  | 1325    |
|-------|----------|---------|-----------|-----------|-----|-------|-------|------|---------|
| 80543 | -20.4641 | 16.6389 | not known |           | 150 | 30    | 12    | 1.1  | 1325    |
| 86910 | -20.4641 | 16.5386 | not known |           | 150 | 122   | 49    | 4.5  | 1401    |
| 86912 | -20.4641 | 16.603  | not known |           | 150 | 60    | 0     | 2.3  | 1434    |
| 29833 | -20.4644 | 16.483  | not known | Omatjenne | 257 | 66    | 40.41 | 0    | 1392.73 |
| 6293  | -20.4647 | 16.6002 | not known | Otjitazu  | 0   | 0     | 0     | 4.5  | 1434    |
| 86905 | -20.4647 | 16.5784 | not known |           | 150 | 116   | 49    | 0.1  | 1415    |
| 86911 | -20.4652 | 16.5416 | not known |           | 0   | 52    | 30    | 13.8 | 1402    |
| 68768 | -20.4663 | 16.4999 | not known | Wieringen | 0   | 0     | 0     | 0    | 0       |
| 86909 | -20.4663 | 16.532  | not known |           | 150 | 116   | 49    | 0    | 1400    |
| 86916 | -20.4669 | 16.5044 | not known |           | 150 | 40    | 30    | 9    | 1405    |
| 86913 | -20.4684 | 16.5055 | not known |           | 150 | 76    | 0     | 0.9  | 1408    |
| 73833 | -20.4691 | 16.5113 | not known |           | 0   | 0     | 0     | 0    | 1210    |
| 86908 | -20.4696 | 16.5255 | not known |           | 150 | 192   | 58    | 4    | 1400    |
| 29000 | -20.472  | 16.5154 | not known | Wieringen | 206 | 100   | 50.09 | 10   | 1396.59 |
| 30485 | -20.472  | 16.5194 | not known | Wesrand   | 150 | 85    | 0     | 5    | 1398    |
| 30636 | -20.4738 | 16.5167 | not known | Wieringen | 164 | 90    | 54.69 | 0    | 1396.09 |
| 80546 | -20.4739 | 16.6406 | not known |           | 0   | 105.2 | 27.4  | 0.5  | 1315    |
| 86895 | -20.4744 | 16.6361 | not known |           | 150 | 63    | 24    | 4.1  | 1458    |
| 86894 | -20.4753 | 16.6376 | not known |           | 150 | 76    | 24    | 1.4  | 1458    |
| 86907 | -20.4753 | 16.5195 | not known |           | 150 | 122   | 55    | 18   | 1399    |
| 86914 | -20.4864 | 16.5139 | not known |           | 150 | 62    | 27    | 2.2  | 1420    |
| 86915 | -20.4882 | 16.5139 | not known |           | 150 | 61    | 43    | 0.2  | 1420    |
| 30486 | -20.4931 | 16.5489 | not known | Wesrand   | 150 | 85    | 0     | 0    | 1428    |
| 86896 | -20.4962 | 16.6149 | not known |           | 0   | 0     | 0     | 0    | 1473    |
| 75237 | -20.5087 | 16.4621 | not known |           | 150 | 91    | 20    | 1.8  | 1410    |
| 78720 | -20.5144 | 16.6866 | not known |           | 150 | 111   | 55    | 1.3  | 1521    |
| 82055 | -20.5169 | 16.6293 | not known |           | 150 | 53    | 24    | 4.1  | 1480    |
| 82054 | -20.5232 | 16.6334 | not known |           | 150 | 76    | 24    | 1.4  | 1485    |
| 76308 | -20.5268 | 16.5543 | not known |           | 150 | 50    | 34    | 1.9  | 1461    |
| 82057 | -20.5367 | 16.6714 | not known |           | 150 | 34    | 12    | 1.4  | 1530    |
| 82051 | -20.539  | 16.5804 | not known |           | 0   | 58    | 0     | 0.8  | 1520    |

| 82075 | -20.5429 | 16.6798 | not known |              | 150 | 24    | 9    | 0.8 | 1535 |
|-------|----------|---------|-----------|--------------|-----|-------|------|-----|------|
| 75241 | -20.5489 | 16.4023 | not known |              | 150 | 49    | 24   | 2   | 1389 |
| 75243 | -20.5509 | 16.3985 | not known |              | 0   | 40    | 31   | 0.9 | 1389 |
| 75242 | -20.5539 | 16.4312 | not known |              | 0   | 112.8 | 46   | 2.3 | 1405 |
| 75238 | -20.5589 | 16.4953 | not known |              | 150 | 69    | 52   | 0.4 | 1453 |
| 26152 | -20.5661 | 16.3874 | not known |              | 0   | 0     | 0    | 0   | 1391 |
| 82062 | -20.5675 | 16.6292 | not known |              | 0   | 0     | 0    | 0   | 1540 |
| 82064 | -20.5735 | 16.5397 | not known |              | 0   | 0     | 0    | 0   | 1500 |
| 82053 | -20.5806 | 16.5888 | not known |              | 150 | 110   | 45   | 2.3 | 1528 |
| 82052 | -20.5832 | 16.5794 | not known |              | 150 | 91    | 37   | 1.6 | 1523 |
| 82065 | -20.5853 | 16.5438 | not known |              | 0   | 0     | 0    | 0   | 1499 |
| 82063 | -20.5865 | 16.6029 | not known |              | 0   | 30.5  | 9.75 | 0.1 | 1549 |
| 29540 | -20.5883 | 16.4205 | not known | Aberfelde 27 | 150 | 63.3  | 0    | 0   | 1422 |
| 11702 | -20.589  | 16.4262 | not known |              | 0   | 106.7 | 0    | 0   | 1421 |
| 82059 | -20.589  | 16.6053 | not known |              | 150 | 46    | 18   | 0.7 | 1549 |
| 75239 | -20.5892 | 16.4231 | not known |              | 150 | 76    | 52   | 0.4 | 1420 |
| 75240 | -20.5897 | 16.4201 | not known |              | 150 | 82    | 52   | 1.1 | 1419 |
| 82069 | -20.5901 | 16.5059 | not known |              | 0   | 0     | 0    | 0   | 1549 |
| 11703 | -20.5902 | 16.4264 | not known |              | 0   | 152.4 | 37   | 2.5 | 1421 |
| 29542 | -20.5908 | 16.42   | not known | Aberfelde 27 | 150 | 49.6  | 0    | 0   | 1420 |
| 82067 | -20.5914 | 16.5433 | not known |              | 0   | 14    | 8    | 0   | 1500 |
| 82066 | -20.5916 | 16.5447 | not known |              | 0   | 0     | 0    | 0   | 1501 |
| 75244 | -20.5938 | 16.4465 | not known |              | 0   | 0     | 0    | 0   | 1445 |
| 82068 | -20.6014 | 16.5248 | not known |              | 0   | 0     | 11   | 0   | 1545 |
| 29541 | -20.6028 | 16.4233 | not known | Aberfelde 27 | 150 | 74    | 0    | 0   | 1425 |
| 75245 | -20.6028 | 16.49   | not known |              | 0   | 0     | 0    | 0   | 1500 |
| 76133 | -20.6074 | 16.3575 | not known |              | 0   | 21    | 20   | 0.4 | 1391 |
| 80864 | -20.6087 | 16.3536 | not known |              | 150 | 85    | 24   | 2.7 | 1396 |
| 76134 | -20.6089 | 16.3515 | not known |              | 0   | 21    | 20   | 0.4 | 1388 |
| 28144 | -20.6094 | 16.5172 | not known |              | 0   | 0     | 0    | 0   | 1528 |
| 26078 | -20.6099 | 16.3753 | not known |              | 150 | 95.2  | 20.4 | 4.8 | 1402 |
| 75233 | -20.6115 | 16.374  | not known |              | 0   | 0     | 15   | 0.5 | 1400 |

| 75234 | -20.6129 | 16.377  | not known | 150 | 67    | 19    | 5.4  | 1400 |
|-------|----------|---------|-----------|-----|-------|-------|------|------|
| 9423  | -20.6156 | 16.3854 | not known | 0   | 68.1  | 20    | 0.3  | 1410 |
| 82070 | -20.616  | 16.5639 | not known | 150 | 44    | 11    | 6    | 1528 |
| 75235 | -20.6263 | 16.3997 | not known | 0   | 21    | 15    | 0.5  | 1421 |
| 75236 | -20.627  | 16.3965 | not known | 150 | 67    | 14    | 3.2  | 1420 |
| 18791 | -20.6285 | 16.3559 | not known | 0   | 76.2  | 22.9  | 4    | 1410 |
| 11037 | -20.6298 | 16.4016 | not known | 0   | 53.6  | 16.46 | 3.2  | 1420 |
| 78751 | -20.63   | 16.5023 | not known | 150 | 103   | 37    | 4.1  | 1510 |
| 18790 | -20.6303 | 16.3397 | not known | 0   | 87.8  | 22.9  | 0    | 1429 |
| 80863 | -20.6306 | 16.3186 | not known | 150 | 40    | 31    | 0.7  | 1390 |
| 76135 | -20.6463 | 16.3743 | not known | 150 | 91    | 46    | 13.6 | 1445 |
| 75252 | -20.6486 | 16.4113 | not known | 150 | 60    | 24    | 3.6  | 1435 |
| 76136 | -20.6513 | 16.3573 | not known | 150 | 100.6 | 45.7  | 2    | 1447 |
| 75251 | -20.6564 | 16.4471 | not known | 0   | 21    | 0     | 0.5  | 1445 |
| 75250 | -20.658  | 16.4501 | not known | 150 | 30    | 0     | 4.1  | 1445 |
| 80862 | -20.6597 | 16.3351 | not known | 150 | 86    | 46    | 4.5  | 1415 |
| 78741 | -20.6639 | 16.5264 | not known | 0   | 122   | 0     | 0    | 1550 |
| 80861 | -20.6665 | 16.3335 | not known | 0   | 24    | 0     | 0.3  | 1415 |
| 17764 | -20.6666 | 16.3309 | not known | 0   | 25.3  | 19.2  | 7.7  | 1415 |
| 78566 | -20.6681 | 16.2624 | not known | 150 | 61    | 0     | 0    | 1394 |
| 80860 | -20.6691 | 16.3337 | not known | 0   | 24    | 0     | 0.4  | 1415 |
| 78740 | -20.6767 | 16.509  | not known | 0   | 91    | 0     | 0    | 1518 |
| 78739 | -20.6778 | 16.5106 | not known | 150 | 110   | 14    | 0    | 1518 |
| 76145 | -20.68   | 16.2714 | not known | 0   | 62.2  | 0     | 2.7  | 1403 |
| 75249 | -20.6819 | 16.4583 | not known | 0   | 18    | 0     | 0.5  | 1490 |
| 75248 | -20.6829 | 16.4623 | not known | 0   | 18    | 0     | 2    | 1490 |
| 30994 | -20.6842 | 16.2665 | not known | 0   | 81    | 0     | 0    | 1415 |
| 75247 | -20.6848 | 16.4612 | not known | 0   | 0     | 0     | 11.4 | 1490 |
| 75246 | -20.685  | 16.463  | not known | 150 | 35    | 0     | 11.4 | 1490 |
| 30993 | -20.6859 | 16.2766 | not known | 0   | 91    | 0     | 0    | 1411 |
| 17765 | -20.6873 | 16.3347 | not known | 0   | 32.1  | 14.6  | 10.1 | 1420 |
| 76142 | -20.6942 | 16.2808 | not known | 150 | 81    | 49    | 1.4  | 1418 |

| 80854 | -20.6961 | 16.3609 | not known | 0   | 37    | 0     | 0   | 1435 |
|-------|----------|---------|-----------|-----|-------|-------|-----|------|
| 80853 | -20.6974 | 16.4317 | not known | 0   | 0     | 0     | 0   | 1475 |
| 80866 | -20.7025 | 16.3349 | not known | 150 | 93.9  | 24    | 0.3 | 1445 |
| 75255 | -20.7031 | 16.3703 | not known | 150 | 76    | 14    | 4.1 | 1430 |
| 76141 | -20.7058 | 16.2636 | not known | 150 | 62    | 46    | 1.8 | 1419 |
| 80865 | -20.706  | 16.3357 | not known | 0   | 117.7 | 76.2  | 0.2 | 1445 |
| 80855 | -20.7069 | 16.3725 | not known | 0   | 25    | 0     | 0.7 | 1440 |
| 78544 | -20.7129 | 16.2402 | not known | 150 | 54    | 18    | 0.3 | 1418 |
| 75256 | -20.7148 | 16.4158 | not known | 150 | 91    | 0     | 1.4 | 1473 |
| 72595 | -20.7155 | 16.2461 | not known | 0   | 5     | 4     | 0   | 1421 |
| 76140 | -20.7259 | 16.2809 | not known | 150 | 56    | 24    | 0.2 | 1440 |
| 80859 | -20.7278 | 16.4099 | not known | 150 | 97    | 30    | 1.6 | 1470 |
| 80857 | -20.7284 | 16.3532 | not known | 150 | 91    | 0     | 2.3 | 1451 |
| 80858 | -20.7292 | 16.4114 | not known | 150 | 91    | 0     | 1.1 | 1471 |
| 76137 | -20.7298 | 16.3288 | not known | 150 | 40    | 24    | 1.4 | 1460 |
| 80856 | -20.73   | 16.3516 | not known | 0   | 18    | 16    | 0   | 1450 |
| 76138 | -20.7303 | 16.3254 | not known | 150 | 47    | 24    | 1.8 | 1460 |
| 72594 | -20.7308 | 16.2316 | not known | 150 | 24    | 14    | 4.5 | 1427 |
| 18254 | -20.7334 | 16.435  | not known | 150 | 138.4 | 38.71 | 9.3 | 1494 |
| 76146 | -20.7392 | 16.3067 | not known | 0   | 91.4  | 0     | 0   | 1472 |
| 76143 | -20.74   | 16.296  | not known | 0   | 93    | 0     | 0   | 1461 |
| 76144 | -20.745  | 16.3027 | not known | 0   | 85.3  | 0     | 0   | 1469 |
| 76139 | -20.748  | 16.287  | not known | 150 | 44    | 18    | 1.8 | 1461 |
| 76259 | -20.7529 | 16.369  | not known | 0   | 0     | 13    | 4.5 | 1470 |
| 76180 | -20.7538 | 16.2051 | not known | 150 | 97    | 24    | 6.8 | 1434 |
| 76238 | -20.7565 | 16.3601 | not known | 150 | 82    | 64    | 0.5 | 1472 |
| 76307 | -20.7587 | 16.3933 | not known | 150 | 140.8 | 27.7  | 4.1 | 1480 |
| 76237 | -20.7614 | 16.2513 | not known | 0   | 60    | 0     | 0   | 1472 |
| 76239 | -20.7723 | 16.3256 | not known | 150 | 139   | 100   | 1.3 | 1491 |
| 76236 | -20.7733 | 16.2597 | not known | 150 | 91    | 35    | 0.9 | 1540 |
| 76234 | -20.7759 | 16.2751 | not known | 150 | 42    | 0     | 0.5 | 1475 |
| 76235 | -20.779  | 16.258  | not known | 150 | 91    | 35    | 0.9 | 1519 |

| 76241 | -20.793  | 16.3333 | not known | 150 | 61   | 15    | 0.5  | 1510 |
|-------|----------|---------|-----------|-----|------|-------|------|------|
| 76194 | -20.7952 | 16.1677 | not known | 150 | 41   | 24    | 3    | 1444 |
| 20304 | -20.8012 | 16.2036 | not known | 0   | 76.2 | 27    | 0    | 1470 |
| 76179 | -20.8015 | 16.1976 | not known | 150 | 46   | 0     | 13.6 | 1460 |
| 76184 | -20.8028 | 16.2003 | not known | 150 | 60   | 0     | 0.3  | 1465 |
| 76183 | -20.8035 | 16.2042 | not known | 150 | 24   | 15    | 0.9  | 1470 |
| 76240 | -20.8035 | 16.3586 | not known | 150 | 185  | 9     | 3.2  | 1520 |
| 76185 | -20.8036 | 16.1987 | not known | 150 | 67   | 21    | 0.5  | 1465 |
| 76181 | -20.8047 | 16.2052 | not known | 150 | 64   | 46    | 0    | 1470 |
| 76182 | -20.8063 | 16.2025 | not known | 0   | 23   | 22    | 0    | 1469 |
| 76243 | -20.8104 | 16.2921 | not known | 0   | 17   | 5     | 15   | 1539 |
| 76244 | -20.8124 | 16.2921 | not known | 150 | 14   | 5     | 4.5  | 1539 |
| 76242 | -20.8142 | 16.2908 | not known | 150 | 37   | 5     | 45   | 1550 |
| 76186 | -20.8211 | 16.2275 | not known | 150 | 48.9 | 18.29 | 0.5  | 1485 |
| 76196 | -20.8235 | 16.1655 | not known | 0   | 25   | 21    | 0.9  | 1458 |
| 10106 | -20.8241 | 16.2607 | not known | 150 | 71.3 | 16.76 | 0.5  | 1515 |
| 30663 | -20.8289 | 16.2897 | not known | 160 | 97   | 25    | 0    | 0    |
| 76250 | -20.8316 | 16.2845 | not known | 150 | 70   | 37    | 2.5  | 1581 |
| 76247 | -20.8318 | 16.2878 | not known | 0   | 177  | 25    | 0    | 1575 |
| 76248 | -20.8334 | 16.2858 | not known | 150 | 60   | 18    | 1.5  | 1570 |
| 76249 | -20.8334 | 16.2845 | not known | 150 | 70   | 18    | 1.5  | 1580 |
| 76187 | -20.8374 | 16.199  | not known | 150 | 38   | 35    | 0.3  | 1485 |
| 76246 | -20.8377 | 16.3274 | not known | 0   | 8    | 5     | 0    | 1550 |
| 76192 | -20.8385 | 16.1272 | not known | 150 | 73   | 55    | 3    | 1470 |
| 76245 | -20.8396 | 16.3252 | not known | 150 | 70   | 0     | 2    | 1550 |
| 76191 | -20.8433 | 16.1288 | not known | 0   | 13   | 7     | 0    | 1470 |
| 76199 | -20.8497 | 16.2365 | not known | 0   | 15   | 14    | 0.1  | 1509 |
| 76251 | -20.8566 | 16.2626 | not known | 150 | 66   | 15    | 4.5  | 1524 |
| 76188 | -20.8567 | 16.1846 | not known | 0   | 16   | 15    | 0.2  | 1489 |
| 76252 | -20.8592 | 16.254  | not known | 150 | 46   | 16    | 0.1  | 1517 |
| 76257 | -20.8606 | 16.258  | not known | 150 | 46   | 16    | 0    | 1520 |
| 76253 | -20.863  | 16.2601 | not known | 0   | 15   | 14    | 0    | 1526 |

| 76258 | -20.8714 | 16.2719 | not known |          | 0   | 0     | 0     | 0    | 1530 |
|-------|----------|---------|-----------|----------|-----|-------|-------|------|------|
| 76255 | -20.8719 | 16.2733 | not known |          | 150 | 46    | 15    | 0    | 1533 |
| 76198 | -20.8741 | 16.2191 | not known |          | 150 | 98    | 64    | 0.1  | 1527 |
| 76174 | -20.8753 | 16.1399 | not known |          | 0   | 45    | 0     | 0    | 1485 |
| 76173 | -20.8781 | 16.142  | not known |          | 0   | 45    | 0     | 0    | 1490 |
| 76189 | -20.8808 | 16.1833 | not known |          | 0   | 25    | 24    | 0.2  | 1503 |
| 76190 | -20.8814 | 16.1825 | not known |          | 150 | 46    | 24    | 0.5  | 1503 |
| 76254 | -20.8818 | 16.2953 | not known |          | 150 | 82    | 34    | 0.1  | 1553 |
| 61467 | -20.8823 | 16.2263 | not known |          | 0   | 0     | 0     | 0    | 1542 |
| 62214 | -20.8832 | 16.1911 | not known |          | 0   | 0     | 0     | 0    | 1512 |
| 61465 | -20.8837 | 16.2256 | not known |          | 0   | 0     | 0     | 0    | 1542 |
| 61466 | -20.8837 | 16.227  | not known |          | 0   | 0     | 0     | 0    | 544  |
| 9346  | -20.8843 | 16.1945 | not known |          | 150 | 62.8  | 0     | 1.1  | 1520 |
| 31503 | -20.885  | 16.1862 | not known |          | 200 | 100   | 23.94 | 0    | 1512 |
| 9355  | -20.8853 | 16.1984 | not known |          | 150 | 32.6  | 0     | 0    | 1521 |
| 76197 | -20.8907 | 16.2471 | not known |          | 150 | 42    | 16    | 4    | 1568 |
| 32408 | -20.8913 | 16.1915 | not known |          | 200 | 100   | 22.68 | 0    | 1520 |
| 5865  | -20.8916 | 16.1875 | not known |          | 150 | 185.7 | 23.1  | 5.6  | 1522 |
| 21531 | -20.8925 | 16.1897 | not known |          | 200 | 68    | 22    | 6    | 1519 |
| 2999  | -20.8925 | 16.1945 | not known |          | 0   | 0     | 0     | 0    | 1523 |
| 3125  | -20.8925 | 16.1945 | not known |          | 0   | 0     | 0     | 0    | 1523 |
| 7257  | -20.8925 | 16.1897 | not known |          | 200 | 65    | 4.9   | 4.5  | 1519 |
| 5872  | -20.8933 | 16.1838 | not known | Kalkfeld | 152 | 184   | 22.86 | 73.6 | 1520 |
| 76256 | -20.8936 | 16.2707 | not known |          | 150 | 58    | 18    | 4    | 1578 |
| 33217 | -20.8945 | 16.186  | not known | Kalkfeld | 200 | 132   | 0     | 15   | 1505 |
| 7862  | -20.896  | 16.1862 | not known | Kalkfeld | 0   | 0     | 12.2  | 6.8  | 1518 |
| 20099 | -20.8966 | 16.1858 | drilled   |          | 150 | 9     | 0     | 0    | 1518 |
| 28554 | -20.8967 | 16.1865 | not known |          | 200 | 100   | 10.5  | 7.2  | 1519 |
| 20100 | -20.8971 | 16.1863 | drilled   |          | 250 | 19    | 9.7   | 0.8  | 1516 |
| 16875 | -20.8975 | 16.1899 | not known |          | 200 | 103   | 17    | 0.4  | 1523 |
| 16886 | -20.8985 | 16.1856 | not known | Kalkfeld | 200 | 100   | 7     | 54.5 | 1519 |
| 76233 | -20.8989 | 16.1859 | not known | Kalkfeld | 0   | 0     | 0     | 0    | 1519 |

| 61464 | -20.899  | 16.1838 | not known |                  | 0   | 0   | 11.5 | 0   | 1535 |
|-------|----------|---------|-----------|------------------|-----|-----|------|-----|------|
| 34586 | -20.8991 | 16.1863 | drilled   | Kalkfeld - Put 2 | 0   | 0   | 0    | 0   | 1519 |
| 24100 | -20.9021 | 16.0827 | not known |                  | 0   | 0   | 0    | 0   | 1450 |
| 76207 | -20.9026 | 16.2449 | not known |                  | 0   | 0   | 0    | 0   | 1590 |
| 76175 | -20.9042 | 16.1754 | not known |                  | 0   | 45  | 0    | 0   | 1549 |
| 76302 | -20.9048 | 16.291  | not known |                  | 0   | 0   | 0    | 0   | 1580 |
| 76301 | -20.9069 | 16.2938 | not known |                  | 0   | 0   | 0    | 0   | 1580 |
| 76172 | -20.9089 | 16.114  | not known |                  | 0   | 45  | 0    | 0   | 1492 |
| 76171 | -20.9097 | 16.1136 | not known |                  | 0   | 45  | 0    | 0   | 1492 |
| 76170 | -20.9127 | 16.1566 | not known |                  | 0   | 45  | 0    | 0   | 1550 |
| 76169 | -20.9135 | 16.1574 | not known |                  | 0   | 45  | 0    | 0   | 1550 |
| 76203 | -20.9146 | 16.1952 | not known |                  | 150 | 88  | 0    | 0   | 1549 |
| 76204 | -20.9146 | 16.1934 | not known |                  | 150 | 76  | 0    | 0   | 1548 |
| 76202 | -20.9165 | 16.1942 | not known |                  | 0   | 30  | 0    | 0   | 1550 |
| 76168 | -20.9174 | 16.1353 | not known |                  | 0   | 0   | 0    | 0   | 1540 |
| 76167 | -20.9188 | 16.134  | not known |                  | 0   | 45  | 0    | 0   | 1540 |
| 76166 | -20.9238 | 16.1233 | not known |                  | 0   | 45  | 0    | 0   | 1500 |
| 76165 | -20.9249 | 16.1221 | not known |                  | 0   | 45  | 0    | 0   | 1500 |
| 76176 | -20.9249 | 16.1066 | not known |                  | 0   | 0   | 0    | 0   | 1482 |
| 76222 | -20.9255 | 16.074  | not known |                  | 0   | 0   | 0    | 0   | 1451 |
| 76200 | -20.9272 | 16.185  | not known |                  | 0   | 30  | 0    | 3.6 | 1552 |
| 76201 | -20.9295 | 16.185  | not known |                  | 0   | 30  | 0    | 0   | 1554 |
| 76205 | -20.9333 | 16.2373 | not known |                  | 150 | 76  | 15   | 0   | 1670 |
| 76218 | -20.9355 | 16.1539 | not known |                  | 0   | 10  | 0    | 0   | 1560 |
| 76214 | -20.9357 | 16.1487 | not known |                  | 0   | 15  | 0    | 4.5 | 1549 |
| 76217 | -20.9375 | 16.1499 | not known |                  | 0   | 13  | 0    | 0   | 1550 |
| 76216 | -20.9376 | 16.1464 | not known |                  | 0   | 14  | 0    | 0   | 1550 |
| 76219 | -20.9384 | 16.1549 | not known |                  | 0   | 13  | 0    | 0   | 1570 |
| 76209 | -20.9413 | 16.1587 | not known |                  | 0   | 14  | 0    | 0   | 1585 |
| 76206 | -20.942  | 16.2429 | not known |                  | 150 | 91  | 0    | 0   | 1660 |
| 76221 | -20.9508 | 16.0381 | not known |                  | 0   | 0   | 0    | 0   | 1500 |
| 76210 | -20.9604 | 16.1993 | not known |                  | 150 | 116 | 47   | 0.3 | 1610 |

| 76215 | -20.967  | 16.1019 | not known | 150 | 55    | 0     | 2   | 1509 |
|-------|----------|---------|-----------|-----|-------|-------|-----|------|
| 76212 | -20.9719 | 16.1552 | not known | 0   | 0     | 0     | 0   | 1572 |
| 29992 | -20.9728 | 16.0158 | not known | 150 | 110   | 40    | 0.1 | 1485 |
| 76208 | -20.974  | 16.2496 | not known | 0   | 0     | 30    | 0   | 1640 |
| 76211 | -20.9753 | 16.1552 | not known | 0   | 0     | 0     | 0   | 1572 |
| 76230 | -20.9766 | 16.0252 | not known | 0   | 52    | 9     | 1.9 | 1491 |
| 76231 | -20.9783 | 16.0251 | not known | 0   | 52    | 27    | 4.5 | 1490 |
| 76220 | -20.9831 | 16.0802 | not known | 0   | 35    | 0     | 0   | 1500 |
| 29994 | -20.9854 | 16.0116 | not known | 150 | 52    | 0     | 0   | 1486 |
| 76232 | -20.9898 | 16.049  | not known | 0   | 39.6  | 0     | 0.3 | 1508 |
| 76213 | -20.9907 | 16.1539 | not known | 0   | 0     | 0     | 0   | 1540 |
| 29993 | -20.9995 | 15.9899 | not known | 150 | 54    | 0     | 0   | 1478 |
| 61775 | -21.0123 | 16.178  | not known | 0   | 0     | 0     | 0   | 1578 |
| 61776 | -21.0141 | 16.1767 | not known | 150 | 140.8 | 49.68 | 2   | 1578 |
| 79064 | -21.0162 | 16.1016 | not known | 150 | 37    | 9     | 1.5 | 1551 |
| 22974 | -21.0168 | 16.0668 | not known | 150 | 88    | 29    | 2.9 | 1539 |
| 79063 | -21.0183 | 16.0675 | not known | 0   | 91    | 21    | 4.5 | 1535 |
| 79062 | -21.0218 | 16.039  | not known | 0   | 18    | 8     | 4.5 | 1515 |
| 61764 | -21.0243 | 16.0978 | not known | 0   | 18    | 0     | 0   | 1555 |
| 61763 | -21.0269 | 16.0996 | not known | 0   | 51    | 0     | 0   | 1552 |
| 61765 | -21.0288 | 16.0962 | not known | 0   | 52    | 24    | 0   | 1553 |
| 12244 | -21.0321 | 16.1427 | not known | 0   | 100   | 0     | 0   | 1570 |
| 61990 | -21.0329 | 16.0077 | not known | 150 | 61    | 12    | 5.5 | 1518 |
| 13099 | -21.0343 | 16.0766 | not known | 150 | 99    | 30.4  | 0.9 | 1544 |
| 79069 | -21.0359 | 16.0601 | not known | 0   | 50.3  | 0     | 0   | 1526 |
| 79066 | -21.0372 | 16.0293 | not known | 150 | 61    | 24    | 0.5 | 1531 |
| 79068 | -21.0382 | 16.0493 | not known | 0   | 50.3  | 0     | 0   | 1529 |
| 79067 | -21.0384 | 16.0456 | not known | 0   | 71.6  | 0     | 0   | 1530 |
| 61475 | -21.0476 | 15.9751 | not known | 0   | 20    | 5     | 0   | 1510 |
| 61760 | -21.0597 | 16.1229 | not known | 0   | 20    | 0     | 0   | 1540 |
| 61757 | -21.0624 | 16.0783 | not known | 150 | 99    | 23    | 0.5 | 1532 |
| 61474 | -21.0626 | 15.9992 | not known | 150 | 45    | 9     | 1.5 | 1510 |

| 61762 | -21.0681 | 16.166  | not known | 0   | 38   | 0     | 0   | 1503 |
|-------|----------|---------|-----------|-----|------|-------|-----|------|
| 79065 | -21.0682 | 16.0516 | not known | 150 | 46   | 21    | 3   | 1520 |
| 61482 | -21.0683 | 15.992  | not known | 0   | 18   | 3     | 0.3 | 1501 |
| 61761 | -21.0699 | 16.1655 | not known | 0   | 7    | 0     | 0   | 1503 |
| 61756 | -21.0707 | 16.0778 | not known | 150 | 73   | 27    | 0.5 | 1537 |
| 61785 | -21.0712 | 16.1708 | not known | 0   | 0    | 0     | 0   | 1502 |
| 61758 | -21.0715 | 16.0989 | not known | 0   | 74.7 | 0     | 0   | 1542 |
| 61759 | -21.0725 | 16.0794 | not known | 0   | 64   | 0     | 0.1 | 1537 |
| 10186 | -21.0794 | 16.002  | not known | 150 | 49   | 14    | 5.3 | 1520 |
| 61483 | -21.0866 | 15.968  | not known | 0   | 0    | 0     | 0   | 1468 |
| 61478 | -21.0877 | 15.9637 | not known | 150 | 34   | 15    | 2.1 | 1460 |
| 13095 | -21.0921 | 16.043  | not known | 150 | 70.7 | 15.8  | 0.8 | 1492 |
| 61771 | -21.0939 | 16.0773 | not known | 0   | 93.3 | 24    | 0.4 | 1505 |
| 61770 | -21.0942 | 16.0896 | not known | 0   | 20   | 0     | 0   | 1476 |
| 61772 | -21.0948 | 16.0744 | not known | 0   | 85.6 | 26.8  | 1   | 1503 |
| 10176 | -21.0953 | 16.0067 | not known | 150 | 50   | 18.28 | 5.4 | 1496 |
| 61766 | -21.0976 | 16.0932 | not known | 0   | 93   | 0     | 4   | 1470 |
| 61767 | -21.1014 | 16.0966 | not known | 0   | 22   | 0     | 0   | 1470 |
| 61773 | -21.1064 | 16.0193 | not known | 150 | 83   | 14    | 3   | 1474 |
| 61769 | -21.1069 | 16.1153 | not known | 0   | 12   | 0     | 0   | 1478 |
| 13094 | -21.1079 | 16.0243 | not known | 150 | 83   | 15    | 3   | 1474 |
| 61774 | -21.1134 | 16.0307 | not known | 150 | 46   | 11    | 0.4 | 1470 |
| 29392 | -21.1217 | 16.1213 | not known | 160 | 54   | 24.3  | 0   | 1270 |
| 65314 | -21.122  | 16.1477 | not known | 0   | 0    | 0     | 0   | 1458 |
| 65315 | -21.1259 | 16.1577 | not known | 0   | 0    | 0     | 0   | 1441 |
| 61794 | -21.1272 | 16.1561 | not known | 0   | 0    | 0     | 0   | 1441 |
| 61768 | -21.128  | 16.1082 | not known | 0   | 28   | 0     | 0   | 1454 |
| 61493 | -21.1473 | 15.98   | not known | 150 | 70   | 55    | 1.3 | 1459 |
| 65332 | -21.1474 | 16.0088 | not known | 150 | 30   | 8     | 2   | 1430 |
| 61989 | -21.1496 | 16.0311 | not known | 0   | 0    | 0     | 0   | 1428 |
| 61494 | -21.1533 | 15.9771 | not known | 150 | 72   | 0     | 0.9 | 1440 |
| 65327 | -21.1579 | 16.0698 | not known | 150 | 70   | 0     | 0.5 | 1408 |

| 65329 | -21.1615 | 16.0693 | not known |          | 0   | 0    | 0    | 0   | 1408 |
|-------|----------|---------|-----------|----------|-----|------|------|-----|------|
| 65331 | -21.1684 | 16.0212 | not known |          | 150 | 30   | 10   | 2   | 1418 |
| 65330 | -21.171  | 16.0157 | not known |          | 150 | 30   | 10   | 2   | 1411 |
| 65325 | -21.1759 | 16.138  | not known |          | 0   | 61   | 0    | 0   | 1428 |
| 61496 | -21.1817 | 15.9874 | not known |          | 150 | 30   | 15   | 2   | 1420 |
| 61985 | -21.187  | 16.0259 | not known |          | 0   | 0    | 0    | 0   | 1392 |
| 65334 | -21.2012 | 16.0298 | not known |          | 0   | 45   | 16   | 5   | 1380 |
| 65326 | -21.2045 | 16.061  | not known |          | 0   | 19   | 0    | 6   | 1380 |
| 65337 | -21.205  | 16.0095 | not known |          | 0   | 34   | 27   | 0   | 1370 |
| 65335 | -21.2056 | 16.0268 | not known |          | 0   | 59   | 9    | 11  | 1378 |
| 61988 | -21.2102 | 16.1031 | not known |          | 0   | 0    | 0    | 0   | 1391 |
| 65339 | -21.2132 | 16.0182 | not known |          | 0   | 187  | 0    | 0   | 1361 |
| 65333 | -21.2136 | 16.0204 | not known |          | 0   | 45.4 | 0    | 0   | 1360 |
| 65336 | -21.2147 | 16.0249 | not known |          | 0   | 34   | 9    | 5   | 1361 |
| 65338 | -21.2218 | 16.0037 | not known |          | 0   | 76   | 24   | 3   | 1356 |
| 61497 | -21.2264 | 15.9994 | not known |          | 0   | 0    | 0    | 0   | 1365 |
| 61499 | -21.2269 | 15.9489 | not known |          | 0   | 34   | 27   | 0   | 1430 |
| 61498 | -21.2275 | 15.9973 | not known |          | 0   | 46   | 27   | 0   | 1375 |
| 65328 | -21.2343 | 16.0348 | not known |          | 0   | 21   | 0    | 4   | 1359 |
| 61986 | -21.2361 | 16.0563 | not known |          | 50  | 40   | 21   | 1   | 1350 |
| 61987 | -21.2392 | 16.0544 | not known |          | 150 | 37   | 22   | 1   | 1350 |
| 61500 | -21.2499 | 15.9531 | not known |          | 0   | 0    | 0    | 0   | 1385 |
| 29365 | -21.2501 | 15.9998 | drilled   | Nei Neis | 50  | 8    | 0    | 0   | 705  |
| 60910 | -21.2504 | 15.9526 | not known |          | 0   | 0    | 0    | 0   | 1380 |
| 26433 | -21.2522 | 15.952  | not known |          | 0   | 0    | 0    | 0   | 1390 |
| 18319 | -21.2706 | 15.9176 | not known |          | 0   | 110  | 22   | 0   | 1340 |
| 5426  | -21.2715 | 16.0619 | not known |          | 0   | 55   | 12.2 | 1.4 | 1325 |
| 60909 | -21.2782 | 15.9932 | not known |          | 0   | 15   | 11   | 0   | 1309 |
| 60908 | -21.281  | 15.9968 | not known |          | 0   | 10   | 0    | 0   | 1312 |
| 29313 | -21.2828 | 16.0517 | not known |          | 150 | 87   | 30   | 0   | 0    |
| 60913 | -21.2872 | 15.9587 | not known |          | 150 | 162  | 58   | 0   | 1323 |
| 30461 | -21.29   | 15.9541 | not known |          | 0   | 0    | 50   | 0.5 | 1326 |

| 60907 | -21.2928 | 15.9203 | not known |             | 0   | 0    | 0    | 0   | 1315 |
|-------|----------|---------|-----------|-------------|-----|------|------|-----|------|
| 93356 | -21.2951 | 15.9331 | not known |             | 0   | 0    | 0    | 0   | 1230 |
| 30460 | -21.2957 | 15.9319 | not known |             | 0   | 0    | 0    | 0   | 1329 |
| 64921 | -21.2966 | 16.0933 | not known |             | 0   | 46   | 18   | 1.4 | 1309 |
| 60926 | -21.3002 | 15.9856 | not known |             | 0   | 0    | 0    | 0   | 1345 |
| 60921 | -21.3008 | 15.9658 | not known |             | 150 | 91   | 18   | 5   | 1338 |
| 22390 | -21.3028 | 15.9641 | not known |             | 150 | 150  | 28   | 4.1 | 1340 |
| 60919 | -21.3059 | 15.9588 | not known |             | 150 | 34   | 22   | 5.4 | 1345 |
| 64918 | -21.3068 | 16.0314 | not known |             | 0   | 76   | 0    | 2   | 1300 |
| 60911 | -21.3078 | 15.9    | not known |             | 0   | 90.8 | 0    | 0   | 1310 |
| 18321 | -21.3086 | 15.895  | not known |             | 0   | 87   | 37   | 2.4 | 1302 |
| 5124  | -21.3087 | 16.0501 | not known |             | 0   | 62   | 0    | 0.9 | 1291 |
| 17679 | -21.3097 | 15.9011 | not known |             | 0   | 77.7 | 0    | 0   | 1311 |
| 5425  | -21.3161 | 16.0529 | not known |             | 150 | 67   | 18   | 1.4 | 1302 |
| 60925 | -21.3193 | 15.997  | not known |             | 0   | 0    | 21   | 0   | 1290 |
| 60912 | -21.3217 | 15.9285 | not known |             | 0   | 134  | 52   | 0   | 1315 |
| 60918 | -21.3238 | 15.9595 | not known |             | 130 | 41   | 18   | 0.5 | 1299 |
| 60924 | -21.3246 | 15.9427 | not known |             | 150 | 24   | 0    | 3   | 1290 |
| 60906 | -21.3334 | 15.9117 | not known |             | 150 | 107  | 18   | 6.8 | 1318 |
| 60899 | -21.3345 | 15.8813 | not known |             | 150 | 62   | 12   | 1   | 1295 |
| 60923 | -21.3348 | 15.9494 | not known |             | 0   | 0    | 0    | 0   | 1284 |
| 61575 | -21.3404 | 16.0793 | not known |             | 0   | 5    | 2    | 0   | 1267 |
| 60929 | -21.3422 | 15.9146 | not known |             | 0   | 0    | 0    | 0   | 1290 |
| 61574 | -21.3444 | 16.0779 | not known |             | 0   | 7    | 2    | 0   | 1266 |
| 64920 | -21.3464 | 16.0088 | not known |             | 0   | 0    | 0    | 0   | 1265 |
| 60902 | -21.349  | 15.8839 | not known |             | 0   | 0    | 0    | 0   | 1279 |
| 27178 | -21.3503 | 16.062  | not known | Stinzinghof | 0   | 0    | 2.82 | 0   | 1260 |
| 61576 | -21.3538 | 16.0583 | not known |             | 0   | 0    | 3.4  | 0   | 1258 |
| 60900 | -21.356  | 15.8674 | not known |             | 150 | 47   | 21   | 5.5 | 1263 |
| 64919 | -21.3562 | 16.035  | not known |             | 0   | 0    | 0    | 0   | 1250 |
| 60922 | -21.3567 | 15.9574 | not known |             | 150 | 137  | 0    | 1.5 | 1265 |
| 28451 | -21.3587 | 16.0539 | not known |             | 260 | 38   | 8    | 0   | 1255 |

| 80462 | -21.36    | 16.0336  | not known |                     | 0   | 0    | 1.89 | 0   | 1250 |
|-------|-----------|----------|-----------|---------------------|-----|------|------|-----|------|
| 60917 | -21.3601  | 15.9747  | not known |                     | 150 | 117  | 61   | 0.7 | 1267 |
| 61580 | -21.3692  | 16.0186  | not known |                     | 0   | 0    | 2    | 30  | 1240 |
| 16359 | -21.3703  | 16.0122  | drilled   | Omaruru             | 150 | 13   | 6.61 | 0   | 1240 |
| 16360 | -21.37049 | 16.01223 | drilled   | Omaruru             | 150 | 10   | 4.5  | 0.3 | 1255 |
| 60920 | -21.3732  | 15.9808  | not known |                     | 0   | 113  | 35   | 3.2 | 1265 |
| 60914 | -21.3742  | 15.9542  | not known |                     | 0   | 0    | 0    | 0   | 1264 |
| 14003 | -21.3772  | 16.0081  | not known |                     | 0   | 0    | 3.17 | 0   | 1239 |
| 16358 | -21.38221 | 16.00577 | drilled   | Omaruru             | 150 | 9.4  | 3.93 | 1   | 1232 |
| 77779 | -21.384   | 16.0082  | drilled   | Okaokasjoti 87      | 0   | 0    | 4.15 | 50  | 1229 |
| 80459 | -21.3853  | 16.0082  | drilled   | Okaokasjoti West 87 | 0   | 0    | 3.59 | 20  | 1230 |
| 16357 | -21.3868  | 16.005   | drilled   | Omdel               | 150 | 13   | 2.5  | 0   | 1230 |
| 80464 | -21.3883  | 15.9969  | not known |                     | 0   | 0    | 2.4  | 0   | 1226 |
| 16141 | -21.3913  | 15.9985  | not known | Omaruru - Kranzberg | 250 | 16.4 | 0.6  | 18  | 1242 |
| 60927 | -21.393   | 15.9164  | not known |                     | 0   | 0    | 0    | 0   | 1238 |
| 60928 | -21.3936  | 15.9155  | not known |                     | 0   | 0    | 0    | 0   | 1238 |
| 27172 | -21.3951  | 15.9879  | not known | Kakombo             | 0   | 0    | 4    | 0   | 1221 |
| 16291 | -21.3966  | 15.9891  | not known | Omaruru - Kranzberg | 250 | 12.4 | 1.8  | 10  | 1235 |
| 80463 | -21.3973  | 15.9843  | not known |                     | 0   | 0    | 3.53 | 0   | 1220 |
| 60930 | -21.3979  | 15.9901  | not known |                     | 0   | 6    | 2    | 0   | 1220 |
| 40144 | -21.39871 | 15.98605 | In Use    | Omaruru             | 0   | 0    | 0    | 0   | 0    |
| 61577 | -21.3988  | 16.0503  | not known |                     | 150 | 133  | 32   | 3.2 | 1262 |
| 60884 | -21.3995  | 15.9865  | not known |                     | 150 | 14   | 2    | 1   | 1219 |
| 60916 | -21.401   | 15.9793  | not known |                     | 0   | 7    | 2    | 0   | 1223 |
| 16305 | -21.40132 | 15.98276 | drilled   | Omaruru             | 150 | 13   | 2.96 | 4   | 1217 |
| 80461 | -21.408   | 15.9789  | not known |                     | 0   | 0    | 2.22 | 0   | 1216 |
| 60915 | -21.4089  | 15.9731  | not known |                     | 0   | 0    | 0    | 0   | 1223 |
| 77970 | -21.4092  | 15.9762  | not known |                     | 0   | 9.1  | 0    | 70  | 1217 |
| 80460 | -21.4104  | 15.9766  | not known |                     | 0   | 0    | 3.05 | 0   | 1215 |
| 60879 | -21.4128  | 15.9742  | not known |                     | 0   | 0    | 0    | 0   | 1216 |
| 60877 | -21.4131  | 15.9743  | not known |                     | 0   | 5    | 0    | 0   | 1216 |
| 60878 | -21.4131  | 15.9742  | not known |                     | 0   | 5    | 1    | 0   | 1216 |

|       |           |          |           |         | 1   |      |      | (   |      |
|-------|-----------|----------|-----------|---------|-----|------|------|-----|------|
| 77969 | -21.4146  | 15.9637  | not known |         | 0   | 0    | 2.58 | 70  | 1219 |
| 77968 | -21.4251  | 15.9502  | not known |         | 0   | 7.6  | 0    | 40  | 1214 |
| 40139 | -21.42592 | 15.94772 | In Use    | Omaruru | 0   | 0    | 0    | 0   | 0    |
| 77967 | -21.4263  | 15.9485  | not known |         | 0   | 7.6  | 0    | 40  | 1214 |
| 61581 | -21.4465  | 16.0336  | not known |         | 150 | 67   | 46   | 3   | 1261 |
| 60881 | -21.4473  | 15.9024  | not known |         | 0   | 4.6  | 0    | 0   | 1183 |
| 60883 | -21.4476  | 15.9026  | not known |         | 0   | 0    | 0    | 0   | 1185 |
| 60882 | -21.4478  | 15.9029  | not known |         | 0   | 6.4  | 0    | 0   | 1185 |
| 60880 | -21.4485  | 15.901   | not known |         | 0   | 5.5  | 0    | 0   | 1185 |
| 77954 | -21.45    | 15.9735  | not known |         | 0   | 0    | 0    | 0   | 1256 |
| 61582 | -21.4506  | 16.0092  | not known |         | 0   | 0    | 0    | 0   | 1253 |
| 77962 | -21.4515  | 15.8619  | not known |         | 0   | 0    | 0    | 0   | 1200 |
| 77961 | -21.4599  | 15.8507  | not known |         | 0   | 0    | 0    | 0   | 1158 |
| 26087 | -21.4641  | 15.8323  | not known |         | 150 | 53   | 8.5  | 4.8 | 1163 |
| 61583 | -21.4669  | 16.0243  | not known |         | 0   | 0    | 0    | 0   | 1270 |
| 77955 | -21.4811  | 15.9934  | not known |         | 0   | 0    | 0    | 0   | 1288 |
| 29229 | -21.4889  | 15.8988  | not known |         | 160 | 80   | 40   | 0.1 | 1240 |
| 29604 | -21.5048  | 15.8783  | not known |         | 160 | 115  | 0    | 0   | 1228 |
| 29602 | -21.5084  | 15.9249  | not known |         | 160 | 74   | 0    | 0   | 1244 |
| 79312 | -21.5192  | 15.9479  | not known |         | 0   | 0    | 0    | 0   | 1235 |
| 79313 | -21.5195  | 15.9493  | not known |         | 0   | 0    | 0    | 0   | 1235 |
| 79308 | -21.5198  | 15.8958  | not known |         | 150 | 52   | 0    | 8   | 1235 |
| 26021 | -21.5305  | 15.8349  | not known |         | 150 | 104  | 17   | 0   | 1208 |
| 79281 | -21.5314  | 15.8379  | not known |         | 0   | 0    | 0    | 0   | 1228 |
| 20265 | -21.5318  | 15.837   | not known |         | 0   | 91.4 | 0    | 0.9 | 1228 |
| 24968 | -21.5337  | 15.8401  | not known |         | 150 | 69   | 9    | 5.4 | 1229 |
| 29231 | -21.5379  | 15.9294  | not known |         | 165 | 62   | 0    | 0   | 1231 |
| 62241 | -21.5405  | 16.0018  | not known |         | 150 | 76   | 0    | 2.3 | 1236 |
| 79306 | -21.5429  | 15.9296  | not known |         | 150 | 131  | 0    | 2   | 1229 |
| 79309 | -21.5443  | 15.8792  | not known |         | 150 | 146  | 0    | 2   | 1270 |
| 79311 | -21.5455  | 15.9373  | not known |         | 0   | 0    | 0    | 0   | 1260 |
| 79307 | -21.5508  | 15.9158  | not known |         | 150 | 134  | 0    | 4   | 1215 |

| L | 24350 | -21.5528 | 15.9669 | not known |               | 0   | 43.3  | 0     | 0   | 1230 |
|---|-------|----------|---------|-----------|---------------|-----|-------|-------|-----|------|
|   | 79310 | -21.5658 | 15.8795 | not known |               | 0   | 0     | 0     | 0   | 1320 |
|   | 61983 | -21.5715 | 15.9909 | not known |               | 0   | 0     | 0     | 0   | 1229 |
|   | 28784 | -21.5799 | 16.0238 | not known |               | 150 | 80    | 57    | 5.5 | 1215 |
|   | 62242 | -21.5804 | 16.0103 | not known |               | 150 | 49    | 0     | 4.5 | 1215 |
|   | 65286 | -21.5836 | 16.0222 | not known |               | 0   | 0     | 0     | 0   | 1218 |
|   | 79322 | -21.5838 | 15.8979 | not known |               | 0   | 91    | 11    | 2.4 | 1175 |
|   | 79327 | -21.5839 | 15.9147 | not known |               | 0   | 94    | 0     | 0   | 1195 |
|   | 79302 | -21.5848 | 15.8585 | not known | Hoogenoeg-170 | 150 | 37    | 18    | 1.8 | 1439 |
|   | 62243 | -21.5875 | 16.0101 | not known |               | 150 | 76    | 0     | 2.3 | 1210 |
|   | 28783 | -21.5881 | 16.0068 | not known |               | 0   | 0     | 0     | 0   | 0    |
|   | 79316 | -21.5902 | 15.9365 | not known |               | 150 | 82    | 10    | 1.5 | 1187 |
|   | 79328 | -21.5915 | 15.9173 | not known |               | 150 | 137.2 | 10.66 | 0.6 | 1185 |
|   | 79317 | -21.5934 | 15.9142 | not known |               | 0   | 0     | 0     | 0   | 31   |
|   | 390   | -21.6044 | 15.9511 | not known |               | 150 | 27.4  | 19.8  | 2.2 | 1181 |
|   | 79325 | -21.6064 | 15.95   | not known |               | 150 | 30    | 18    | 2.3 | 1181 |
|   | 61982 | -21.607  | 15.9704 | not known |               | 0   | 33.5  | 0     | 0   | 1187 |
|   | 79301 | -21.6075 | 15.841  | not known | Hoogenoeg-170 | 150 | 20    | 9     | 11  | 1425 |
|   | 79315 | -21.6082 | 15.9252 | not known |               | 0   | 0     | 20    | 0   | 1171 |
|   | 79324 | -21.6083 | 15.9491 | not known |               | 150 | 30    | 3     | 2.3 | 1182 |
|   | 79326 | -21.6085 | 15.94   | not known |               | 0   | 65    | 0     | 3   | 1175 |
|   | 79285 | -21.6098 | 15.985  | not known |               | 0   | 20    | 0     | 1.8 | 1201 |
|   | 79318 | -21.6118 | 15.8946 | not known |               | 150 | 63    | 0     | 1.5 | 1170 |
|   | 79319 | -21.6169 | 15.9196 | not known |               | 0   | 27    | 15    | 0   | 1165 |
|   | 79320 | -21.619  | 15.9196 | not known |               | 0   | 59    | 0     | 2.1 | 1167 |
|   | 22369 | -21.6194 | 15.88   | not known |               | 150 | 79    | 32    | 2.5 | 1190 |
|   | 79321 | -21.6272 | 15.8908 | not known |               | 150 | 64    | 22    | 5.1 | 1171 |
|   | 17280 | -21.6307 | 16.0273 | not known |               | 150 | 67    | 37    | 1.6 | 1230 |
|   | 79305 | -21.6337 | 15.8289 | not known | Hoogenoeg-170 | 0   | 0     | 0     | 0   | 1555 |
|   | 79314 | -21.6345 | 15.9135 | not known |               | 150 | 37    | 15    | 1.5 | 1152 |
|   | 17299 | -21.6363 | 16.0319 | not known |               | 0   | 39.6  | 0     | 0   | 1230 |
|   | 79304 | -21.6369 | 15.84   | not known | Hoogenoeg-170 | 0   | 0     | 0     | 0   | 1510 |
|   |       |          |         |           |               |     |       |       |     |      |

| 79288 | -21.6508 | 15.8856 | not known |                        | 150 | 33   | 18    | 2.5  | 1159   |
|-------|----------|---------|-----------|------------------------|-----|------|-------|------|--------|
| 30271 | -21.6513 | 15.881  | not known |                        | 150 | 50   | 10    | 0    | 0      |
| 79289 | -21.6669 | 15.864  | not known |                        | 150 | 76   | 37    | 3    | 1159   |
| 79323 | -21.6683 | 15.9686 | not known |                        | 150 | 30   | 9     | 2.3  | 1192   |
| 9926  | -21.6703 | 15.8016 | not known |                        | 150 | 114  | 29    | 3.2  | 1625   |
| 79294 | -21.6722 | 15.8939 | not known |                        | 0   | 76   | 15    | 1.3  | 1125   |
| 4067  | -21.6776 | 15.7802 | not known |                        | 150 | 78   | 22.86 | 10.9 | 1540   |
| 79290 | -21.6811 | 15.8655 | not known |                        | 0   | 46   | 33    | 1.5  | 1159   |
| 61235 | -21.6846 | 15.7624 | not known |                        | 0   | 0    | 0     | 0    | 1545   |
| 79292 | -21.6852 | 15.8823 | not known |                        | 150 | 27   | 15    | 2    | 1118   |
| 79291 | -21.686  | 15.8808 | not known |                        | 0   | 0    | 15    | 2    | 25     |
| 79329 | -21.6912 | 15.7835 | not known |                        | 50  | 114  | 30    | 6.7  | 1585   |
| 79293 | -21.6951 | 15.8733 | not known |                        | 0   | 30   | 10    | 4    | 1118   |
| 79287 | -21.6969 | 15.8871 | not known |                        | 0   | 0    | 0     | 0    | 1130   |
| 5607  | -21.7028 | 15.9798 | not known |                        | 150 | 36.9 | 9.1   | 1.4  | 1190   |
| 61940 | -21.7072 | 15.7446 | not known |                        | 0   | 0    | 0     | 0    | 1475   |
| 79286 | -21.7095 | 15.9365 | not known |                        | 0   | 0    | 0     | 0    | 1170   |
| 61941 | -21.7249 | 15.7471 | not known |                        | 0   | 0    | 0     | 0    | 1478   |
| 79284 | -21.7287 | 15.8533 | not known |                        | 0   | 46   | 15    | 2    | 1108   |
| 61943 | -21.7325 | 15.7371 | not known |                        | 0   | 0    | 0     | 0    | 1520   |
| 61942 | -21.7336 | 15.7244 | not known |                        | 0   | 70   | 0     | 0    | 1515   |
| 61945 | -21.7351 | 15.7257 | not known |                        | 0   | 0    | 0     | 0    | 1519   |
| 61944 | -21.7366 | 15.7455 | not known |                        | 0   | 0    | 0     | 0    | 1534   |
| 79283 | -21.7389 | 15.9389 | not known |                        | 0   | 0    | 0     | 5    | 1161   |
| 79282 | -21.7456 | 15.875  | not known |                        | 0   | 0    | 0     | 1.4  | 1123   |
| 79043 | -21.7555 | 15.9073 | not known |                        | 0   | 0    | 0     | 2.7  | 1127   |
| 79040 | -21.7597 | 15.8146 | not known |                        | 0   | 122  | 0     | 1.5  | 1075   |
| 79039 | -21.76   | 15.8113 | not known |                        | 0   | 0    | 0     | 4    | 1075   |
| 79036 | -21.7624 | 15.7954 | not known |                        | 150 | 79   | 24    | 2    | 1070   |
| 8962  | -21.778  | 15.9001 | not known | Spes Bona              | 100 | 31   | 0     | 0    | 969.1  |
| 8928  | -21.7782 | 15.9176 | not known | Spes Bona              | 120 | 75.3 | 21.35 | 0    | 1000.9 |
| 8961  | -21.7783 | 15.8972 | drilled   | Spes Bona - Khan river | 203 | 76.2 | 27.97 | 6.8  | 969.1  |

| 9036  | -21.7791 | 15.9357 | not known | Spes Bona | 200 | 73.2 | 13   | 0   | 1020.7 |
|-------|----------|---------|-----------|-----------|-----|------|------|-----|--------|
| 78997 | -21.7793 | 15.9057 | not known |           | 0   | 0    | 0    | 0   | 981.7  |
| 78998 | -21.7793 | 15.9119 | not known |           | 200 | 68.3 | 0    | 0   | 998.5  |
| 7990  | -21.7793 | 15.9054 | not known | Spes Bona | 200 | 32   | 8.5  | 0   | 982.3  |
| 79032 | -21.7798 | 15.7986 | not known |           | 0   | 31.4 | 0    | 1.8 | 1071   |
| 79037 | -21.7803 | 15.7802 | not known |           | 0   | 35.1 | 0    | 0.7 | 1054   |
| 8960  | -21.7812 | 15.93   | not known | Spes Bona | 200 | 74.7 | 0    | 3.6 | 1128   |
| 79041 | -21.7858 | 15.8433 | not known |           | 0   | 0    | 0    | 3.2 | 1088   |
| 79033 | -21.7863 | 15.7708 | not known |           | 0   | 9.8  | 0    | 1.4 | 1054   |
| 78976 | -21.7871 | 15.6826 | not known |           | 150 | 55   | 0    | 2   | 1090   |
| 26946 | -21.791  | 15.9069 | not known |           | 0   | 100  | 0    | 0   | 1145   |
| 79059 | -21.7916 | 15.7849 | not known |           | 0   | 0    | 0    | 0   | 1070   |
| 79042 | -21.7938 | 15.8606 | not known |           | 0   | 0    | 0    | 1.4 | 1118   |
| 79058 | -21.7974 | 15.8561 | not known |           | 0   | 0    | 0    | 0   | 1115   |
| 79034 | -21.7999 | 15.7622 | not known |           | 0   | 30.5 | 0    | 9.1 | 1044   |
| 79035 | -21.8023 | 15.7532 | not known |           | 150 | 32   | 7    | 4   | 1044   |
| 29603 | -21.8034 | 15.878  | not known |           | 160 | 74   | 0    | 0   | 1229   |
| 79001 | -21.8091 | 15.8887 | not known |           | 150 | 76.2 | 0    | 0   | 1148   |
| 79038 | -21.8103 | 15.8026 | not known |           | 0   | 58.5 | 0    | 3.6 | 1117   |
| 78955 | -21.8139 | 15.7171 | not known |           | 0   | 0    | 0    | 0   | 1021   |
| 78952 | -21.8275 | 15.7187 | not known |           | 0   | 0    | 0    | 0   | 1035   |
| 78975 | -21.8286 | 15.651  | not known |           | 150 | 43   | 6    | 8   | 987    |
| 78953 | -21.8347 | 15.7109 | not known |           | 0   | 0    | 0    | 0   | 1148   |
| 78954 | -21.836  | 15.6903 | not known |           | 0   | 0    | 0    | 0   | 1068   |
| 78951 | -21.839  | 15.7366 | not known |           | 0   | 0    | 0    | 0   | 1051   |
| 79030 | -21.8404 | 15.8258 | not known |           | 150 | 54.9 | 0    | 2.7 | 1101   |
| 78956 | -21.8467 | 15.7364 | not known |           | 0   | 0    | 0    | 0   | 1080   |
| 78963 | -21.8483 | 15.6858 | not known |           | 0   | 0    | 0    | 0   | 1056   |
| 78949 | -21.8491 | 15.6703 | not known |           | 0   | 0    | 0    | 0   | 1025   |
| 79031 | -21.8491 | 15.775  | not known |           | 0   | 0    | 0    | 0   | 1085   |
| 18324 | -21.8641 | 15.7657 | not known |           | 0   | 43   | 15.8 | 2.7 | 1064   |
| 61243 | -21.8654 | 15.7288 | not known |           | 0   | 85.3 | 0    | 1.3 | 1044   |

| 18196         -21.8748         15.7777         not known         0         0         0         0         0         0         11           78964         -21.8751         15.675         not known         0         0         0         0         0         11           78965         -21.8803         15.735         not known         0         80         0         0         11           78943         -21.8838         15.7266         not known         0         9         0         0         11           78943         -21.8838         15.5861         not known         0         914         0         2         11           78956         -21.8973         15.5765         not known         0         93.9         0         0         12           78956         -21.9091         15.5741         not known         0         12         8         0         12           78966         -21.9191         15.5784         not known         150         91         0.4         4.5         14           78966         -21.9136         15.7284         not known         0         0         0         0         11           78966                                                                                                                                                        |       |           |         |           |                     |     |       |     |     |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|---------|-----------|---------------------|-----|-------|-----|-----|-------|
| 78964         -21.8751         15.675 not known         0         0         0         0         1           78965         -21.8803         15.6735 not known         0         0         0         0         1           78965         -21.8813         15.8735 not known         0         0         0         0         1           78943         -21.8859         15.6953 not known         0         91.4         0         2         1           78987         -21.8973         15.5796 not known         0         93.9         0         0         1           78950         -21.9001         15.728 not known         0         0         0         1           78961         -21.9001         15.5741 not known         0         0         0         1           78962         -21.9019         15.5744 not known         0         0         0         1           78982         -21.914         15.5784 not known         0         0         0         0         1           78982         -21.9143         15.7254 not known         0         0         0         1         1           78982         -21.9153         15.7254 not known         0                                                                                                                                            | 18196 | -21.8748  | 15.7777 | not known |                     | 0   | 47.5  | 0   | 0   | 1075  |
| 78965         -21.8803         15.6735         not known         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>78964</td> <td>-21.8751</td> <td>15.675</td> <td>not known</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1060</td>                                            | 78964 | -21.8751  | 15.675  | not known |                     | 0   | 0     | 0   | 0   | 1060  |
| 79061       -21.8818       15.8413 not known       0       80       0       0       1         78943       -21.8859       15.7286 not known       0       91.4       0       2       11         78987       -21.8959       15.6523 not known       0       93.9       0       0       1         78950       -21.8973       15.5796 not known       0       93.9       0       0       1         78950       -21.9001       15.5796 not known       0       0       0       0       0       1         78966       -21.9095       15.5796 not known       0       12       8       0       9         78966       -21.9095       15.5744 not known       0       0       0       0       1         78961       -21.9136       15.7283 not known       0       0       0       0       1         78962       -21.9149       15.738 not known       0       0       0       0       1       1         78961       -21.9149       15.738 not known       0       0       0       0       1       1         78962       -21.9149       15.5746 not known       0       0       0       1 <td>78965</td> <td>-21.8803</td> <td>15.6735</td> <td>not known</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1048</td>                                                                                    | 78965 | -21.8803  | 15.6735 | not known |                     | 0   | 0     | 0   | 0   | 1048  |
| 78943         -21.8838         15.7286 not known         0         0         0         0         11           61242         -21.8848         15.5953 not known         0         91.4         0         2         11           78987         -21.8948         15.5576 not known         0         93.9         0         0         14           14792         -21.8973         15.5796 not known         0         93.9         0         0         1           78950         -21.9001         15.7328 not known         0         12         8         0         1           78966         -21.9095         15.5696 not known         150         31         12         4.5         1           78961         -21.9136         15.7283 not known         0         0         0         0         11           78962         -21.9149         15.7316 not known         0         0         0         0         11           78962         -21.9153         15.7254 not known         0         0         0         11           78962         -21.9149         15.731 drilled         Usakos - Khan river         200         21.3         6.4         2.3         90                                                                                                                                       | 79061 | -21.8818  | 15.8413 | not known |                     | 0   | 80    | 0   | 0   | 1129  |
| 61242         -21.8859         15.6953 not known         0         91.4         0         2         11           78987         -21.8948         15.5821 not known         0         29         0         5.4         9           14792         -21.8948         15.5766 not known         0         93.9         0         0         9           78950         -21.9001         15.7328 not known         0         12         8         0         9           78966         -21.9095         15.5741 not known         0         12         8         0         9           78966         -21.9095         15.5741 not known         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         11         78961         -21.9163         15.7254 not known         0         0         0         0         11         78962         -21.9161         15.5713 drilled         Usakos - Khan river         200         21.3         6.4         2.3         90         11         78942                                                                                                                       | 78943 | -21.8838  | 15.7286 | not known |                     | 0   | 0     | 0   | 0   | 1033  |
| 78987         -21.8948         15.5821         not known         0         29         0         5.4           14792         -21.8973         15.5736         not known         0         93.9         0         0         1           78950         -21.901         15.5741         not known         0         12         8         0         1           78966         -21.909         15.5741         not known         150         90         40         0.4         1           78966         -21.911         15.5784         not known         150         31         12         4.5         1           78960         -21.9149         15.7316         not known         0         0         0         0         11           78960         -21.9149         15.7316         not known         0         0         0         0         11           78961         -21.9163         15.7254         not known         0         0         0         0         11           78948         -21.9174         15.8758         not known         0         0         0         11           78948         -21.9174         15.7983         not known         0 <td>61242</td> <td>-21.8859</td> <td>15.6953</td> <td>not known</td> <td></td> <td>0</td> <td>91.4</td> <td>0</td> <td>2</td> <td>1016</td>  | 61242 | -21.8859  | 15.6953 | not known |                     | 0   | 91.4  | 0   | 2   | 1016  |
| 14792         -21.8973         15.5796         not known         0         93.9         0         0           78950         -21.9001         15.7328         not known         0         0         0         0         11           78981         -21.9095         15.5969         not known         0         12         8         0         14           78986         -21.9095         15.5969         not known         150         90         40         0.4         9           78981         -21.9133         15.7284         not known         0         0         0         0         11           78961         -21.9133         15.7254         not known         0         0         0         0         11           78962         -21.9153         15.7254         not known         0         0         0         0         11           78982         -21.91661         15.5713         drilled         Usakos - Khan river         200         21.3         6.4         2.3         90           18325         -21.9174         15.8156         not known         0         0         0         1           18134         -21.9256         15.733                                                                                                                                           | 78987 | -21.8948  | 15.5821 | not known |                     | 0   | 29    | 0   | 5.4 | 922   |
| 78950         -21.9001         15.7328         not known         0         0         0         0         0         11           78981         -21.909         15.5741         not known         150         90         40         0.4         90           78966         -21.9095         15.5764         not known         150         90         40         0.4         90           78966         -21.9136         15.7283         not known         0         0         0         0         0         0         0         11           78960         -21.9133         15.7284         not known         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         11         78962         -21.9149         15.713         not known         0         0         0         0         11         78942         -21.9174         15.8166         not known         0         0         0         11         78943         -21.9177         15.7059         not known         0         0         0         11         78945         -21.936         15.733         not known         0                                                                                                                         | 14792 | -21.8973  | 15.5796 | not known |                     | 0   | 93.9  | 0   | 0   | 922   |
| 78981         -21.909         15.5741         not known         0         12         8         0         15           78966         -21.9095         15.5969         not known         150         90         40         0.4         90           789861         -21.911         15.5784         not known         150         31         12         4.5         90           789861         -21.9136         15.7283         not known         0         0         0         0         11           78960         -21.9149         15.7316         not known         0         0         0         0         11           78962         -21.9153         15.7254         not known         0         0         0         0         11           78948         -21.9164         15.5713         drilled         Usakos - Khan river         200         21.3         6.4         2.3         90           18325         -21.9174         15.8156         not known         0         74         0         0         11           18194         -21.9256         15.793         not known         0         0         0         0         11           78945 <td< td=""><td>78950</td><td>-21.9001</td><td>15.7328</td><td>not known</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>1055</td></td<> | 78950 | -21.9001  | 15.7328 | not known |                     | 0   | 0     | 0   | 0   | 1055  |
| 78966       -21.9095       15.5969       not known       150       90       40       0.4         78982       -21.911       15.7284       not known       0       0       0       0       0       11         78961       -21.9136       15.7283       not known       0       0       0       0       0       11         78961       -21.9136       15.7254       not known       0       0       0       0       11         78962       -21.9153       15.7254       not known       0       0       0       0       11         22160       -21.9161       15.5713       drilled       Usakos - Khan river       200       21.3       6.4       2.3       90         18325       -21.9177       15.7059       not known       0       0       0       0       11         78945       -21.9256       15.7983       not known       0       64       0       0       11         61241       -21.9296       15.6613       not known       0       0       0       0       11         78945       -21.936       15.733       not known       0       0       0       0       11                                                                                                                                                                                                                                  | 78981 | -21.909   | 15.5741 | not known |                     | 0   | 12    | 8   | 0   | 913   |
| 78982       -21.911       15.5784       not known       150       31       12       4.5       4.5         78961       -21.9136       15.7283       not known       0       0       0       0       11         78960       -21.9149       15.7316       not known       0       0       0       0       11         78962       -21.9153       15.7254       not known       0       0       0       0       11         22160       -21.9163       15.7734       not known       0       0       0       11         22160       -21.9174       15.5759       not known       0       74       0       0       11         18325       -21.9177       15.7059       not known       0       0       0       0       11         18194       -21.9256       15.7983       not known       0       64       0       0       11         61241       -21.926       15.6613       not known       0       0       0       0       11         78945       -21.9391       15.738       not known       0       0       0       11         78947       -21.9393       15.7418                                                                                                                                                                                                                                             | 78966 | -21.9095  | 15.5969 | not known |                     | 150 | 90    | 40  | 0.4 | 974   |
| 78961         -21.9136         15.7283         not known         0         0         0         0         0         1           78960         -21.9149         15.7316         not known         0         0         0         0         0         1           78962         -21.9153         15.7254         not known         0         0         0         0         1           22160         -21.9161         15.5713         drilled         Usakos - Khan river         200         21.3         6.4         2.3         90           18325         -21.9174         15.8156         not known         0         0         0         1         1           18348         -21.926         15.7983         not known         0         64         0         0         1           18194         -21.926         15.6613         not known         0         85.3         0         6.8         9           78945         -21.936         15.733         not known         0         0         0         1           78947         -21.9391         15.718         not known         0         0         0         1         1           78947                                                                                                                                                            | 78982 | -21.911   | 15.5784 | not known |                     | 150 | 31    | 12  | 4.5 | 919   |
| 78960       -21.9149       15.7316       not known       0       0       0       0       11         78962       -21.9153       15.7254       not known       0       0       0       0       11         22160       -21.91661       15.5713       drilled       Usakos - Khan river       200       21.3       6.4       2.3       90         18325       -21.9174       15.8156       not known       0       74       0       0       11         78948       -21.9177       15.7059       not known       0       64       0       0       11         18194       -21.9256       15.7933       not known       0       64       0       0       11         61241       -21.9296       15.6613       not known       0       0       0       0       11         78947       -21.9391       15.7195       not known       0       0       0       0       11         78947       -21.9393       15.7418       not known       0       0       0       11         78947       -21.9393       15.7577       not known       0       0       0       11         78957       -2                                                                                                                                                                                                                                  | 78961 | -21.9136  | 15.7283 | not known |                     | 0   | 0     | 0   | 0   | 1052  |
| 78962       -21.9153       15.7254       not known       0       0       0       0       11         22160       -21.91661       15.5713       drilled       Usakos - Khan river       200       21.3       6.4       2.3       90         18325       -21.9174       15.8156       not known       0       74       0       0       11         78948       -21.9177       15.7059       not known       0       0       0       0       11         18194       -21.9256       15.7933       not known       0       64       0       0       11         61241       -21.9296       15.6613       not known       0       85.3       0       6.8       92         78945       -21.936       15.733       not known       0       0       0       0       11         78947       -21.9391       15.718       not known       0       0       0       0       11         78947       -21.9393       15.7418       not known       0       0       0       11         78947       -21.9406       15.6793       not known       0       0       0       11         78957       -                                                                                                                                                                                                                                  | 78960 | -21.9149  | 15.7316 | not known |                     | 0   | 0     | 0   | 0   | 1052  |
| 22160       -21.91661       15.5713       drilled       Usakos - Khan river       200       21.3       6.4       2.3       90         18325       -21.9174       15.8156       not known       0       74       0       0       11         78948       -21.9177       15.7059       not known       0       0       0       0       11         18194       -21.9256       15.7983       not known       0       64       0       0       11         61241       -21.9266       15.6613       not known       0       85.3       0       6.8       9         78945       -21.936       15.7135       not known       0       0       0       0       11         78947       -21.9391       15.7195       not known       0       0       0       0       11         78947       -21.9393       15.7418       not known       0       0       0       0       11         78947       -21.9406       15.6793       not known       150       67       0       0       11         78957       -21.9456       15.7597       not known       0       0       0       11       11                                                                                                                                                                                                                                   | 78962 | -21.9153  | 15.7254 | not known |                     | 0   | 0     | 0   | 0   | 1048  |
| 18325       -21.9174       15.8156 not known       0       74       0       0       1         78948       -21.9177       15.7059 not known       0       0       0       0       0       1         18194       -21.9256       15.7983 not known       0       64       0       0       1         61241       -21.9296       15.6613 not known       0       85.3       0       6.8       9         78945       -21.936       15.733 not known       0       0       0       0       0       1         78947       -21.9391       15.7195 not known       0       0       0       0       0       1         78947       -21.9393       15.7418 not known       0       0       0       0       1         78947       -21.9393       15.7597 not known       0       0       0       0       1         78957       -21.9406       15.6793 not known       150       67       0       0       1         78946       -21.9456       15.7326 not known       0       0       0       0       1         61240       -21.9527       15.6367 not known       0       0       0       1                                                                                                                                                                                                                               | 22160 | -21.91661 | 15.5713 | drilled   | Usakos - Khan river | 200 | 21.3  | 6.4 | 2.3 | 907.9 |
| 78948       -21.9177       15.7059       not known       0       0       0       0       1         18194       -21.9256       15.7983       not known       0       64       0       0       1         61241       -21.9296       15.6613       not known       0       85.3       0       6.8       9         78945       -21.936       15.733       not known       0       0       0       0       1         78947       -21.9391       15.7195       not known       0       0       0       0       1         78944       -21.9393       15.7418       not known       0       0       0       0       1         78957       -21.9406       15.6793       not known       0       0       0       0       1         78957       -21.9456       15.7597       not known       150       67       0       0       1         78946       -21.9466       15.7326       not known       0       0       0       0       1         61240       -21.9527       15.6367       not known       0       0       0       0       1         78995       -21.9543                                                                                                                                                                                                                                                    | 18325 | -21.9174  | 15.8156 | not known |                     | 0   | 74    | 0   | 0   | 1133  |
| 18194       -21.9256       15.7983 not known       0       64       0       0       1         61241       -21.9296       15.6613 not known       0       85.3       0       6.8       9         78945       -21.936       15.733 not known       0       0       0       0       0       1         78947       -21.9391       15.7195 not known       0       0       0       0       0       1         78947       -21.9393       15.7418 not known       0       0       0       0       1         78957       -21.9406       15.6793 not known       0       0       0       0       1         78957       -21.9406       15.6793 not known       0       0       0       0       1         78964       -21.9456       15.7597 not known       150       67       0       0       1         78946       -21.9466       15.7326 not known       0       0       0       0       1         61240       -21.9527       15.6367 not known       200       37       0       0       1         78995       -21.9631       15.7001 not known       0       0       0       1       1 <td>78948</td> <td>-21.9177</td> <td>15.7059</td> <td>not known</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1034</td>                                                                                    | 78948 | -21.9177  | 15.7059 | not known |                     | 0   | 0     | 0   | 0   | 1034  |
| 61241       -21.9296       15.6613       not known       0       85.3       0       6.8       9         78945       -21.936       15.733       not known       0       0       0       0       10         78947       -21.9391       15.7195       not known       0       0       0       0       11         78947       -21.9393       15.7418       not known       0       0       0       0       11         78957       -21.9406       15.6793       not known       0       0       0       0       11         78957       -21.945       15.7597       not known       0       0       0       0       11         78946       -21.9456       15.7326       not known       150       67       0       0       11         78946       -21.9456       15.7326       not known       0       0       0       11         61240       -21.9527       15.6367       not known       0       0       0       11         61240       -21.9543       15.7095       not known       200       37       0       0       11         61239       -21.9649       15.638                                                                                                                                                                                                                                             | 18194 | -21.9256  | 15.7983 | not known |                     | 0   | 64    | 0   | 0   | 1126  |
| 78945       -21.936       15.733       not known       0       0       0       0       11         78947       -21.9391       15.7195       not known       0       0       0       0       11         78947       -21.9393       15.7418       not known       0       0       0       0       11         78944       -21.9393       15.7418       not known       0       0       0       0       11         78957       -21.9406       15.6793       not known       0       0       0       0       11         79002       -21.945       15.7597       not known       150       67       0       0       11         78946       -21.9466       15.7326       not known       0       0       0       0       11         61240       -21.9527       15.6367       not known       0       106.7       0       14         61240       -21.9543       15.7095       not known       200       37       0       0       16         78958       -21.9631       15.7001       not known       0       0       0       0       16         61239       -21.9649                                                                                                                                                                                                                                                  | 61241 | -21.9296  | 15.6613 | not known |                     | 0   | 85.3  | 0   | 6.8 | 971   |
| 78947-21.939115.7195not known0000178944-21.939315.7418not known0000178957-21.940615.6793not known0000179002-21.94515.7597not known1506700178946-21.946615.7326not known0000161240-21.952715.6367not known0000161240-21.954315.7095not known0106.701.8978958-21.963115.7001not known2003700161239-21.963115.7001not known0000161239-21.964915.638not known0000161239-21.966415.6305drilledUsakos2002400927861-21.967215.6341drilledUsakos20030009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78945 | -21.936   | 15.733  | not known |                     | 0   | 0     | 0   | 0   | 1076  |
| 78944-21.939315.7418not known0000178957-21.940615.6793not known0000179002-21.94515.7597not known1506700178946-21.946615.7326not known0000161240-21.952715.6367not known0001161240-21.954315.7095not known0106.701161240-21.954315.7095not known2003700161240-21.954315.7095not known2003700161239-21.964315.7001not known0000161239-21.964915.638not known0000161239-21.964415.6305drilledUsakos2002400927861-21.966415.6341drilledUsakos20030009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78947 | -21.9391  | 15.7195 | not known |                     | 0   | 0     | 0   | 0   | 1057  |
| 78957       -21.9406       15.6793       not known       0       0       0       0       10         79002       -21.945       15.7597       not known       150       677       0       0       10         78946       -21.9466       15.7326       not known       0       0       0       0       10         61240       -21.9527       15.6367       not known       0       106.7       0       1.8       15         78995       -21.9543       15.7095       not known       200       37       0       0       10         78958       -21.9631       15.7001       not known       0       0       0       0       10         61239       -21.9649       15.638       not known       0       0       0       0       10         61239       -21.9644       15.6305       drilled       Usakos       200       24       0       0       9         27865       -21.9672       15.6341       drilled       Usakos       200       30       0       0       9                                                                                                                                                                                                                                                                                                                                             | 78944 | -21.9393  | 15.7418 | not known |                     | 0   | 0     | 0   | 0   | 1082  |
| 79002-21.94515.7597not known15067016016078946-21.946615.7326not known000016016061240-21.952715.6367not known0106.701.8978995-21.954315.7095not known200370016078958-21.963115.7001not known000016061239-21.964915.638not known000016027861-21.966415.6305drilledUsakos2003000927865-21.967215.6341drilledUsakos20030009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78957 | -21.9406  | 15.6793 | not known |                     | 0   | 0     | 0   | 0   | 1011  |
| 78946       -21.9466       15.7326       not known       0       0       0       1         61240       -21.9527       15.6367       not known       0       106.7       0       1.8       9         78995       -21.9543       15.7095       not known       200       37       0       0       1         78958       -21.9631       15.7001       not known       200       37       0       0       1         61239       -21.9649       15.638       not known       0       0       0       1       1         61239       -21.9649       15.638       not known       0       0       0       0       1       1         27861       -21.9664       15.6305       drilled       Usakos       200       30       0       0       9         27865       -21.9672       15.6341       drilled       Usakos       200       30       0       0       9                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79002 | -21.945   | 15.7597 | not known |                     | 150 | 67    | 0   | 0   | 1095  |
| 61240       -21.9527       15.6367       not known       0       106.7       0       1.8       9         78995       -21.9543       15.7095       not known       200       37       0       0       0         78958       -21.9631       15.7001       not known       0       0       0       0       10         61239       -21.9649       15.638       not known       0       0       0       0       10         61239       -21.9664       15.638       not known       0       0       0       0       9         27861       -21.9664       15.6305       drilled       Usakos       200       30       0       0       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78946 | -21.9466  | 15.7326 | not known |                     | 0   | 0     | 0   | 0   | 1074  |
| 78995       -21.9543       15.7095       not known       200       37       0       0         78958       -21.9631       15.7001       not known       0       0       0       16         61239       -21.9649       15.638       not known       0       0       0       0       16         27861       -21.9664       15.6305       drilled       Usakos       200       24       0       0       9         27865       -21.9672       15.6341       drilled       Usakos       200       30       0       0       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61240 | -21.9527  | 15.6367 | not known |                     | 0   | 106.7 | 0   | 1.8 | 952   |
| 78958       -21.9631       15.7001       not known       0       0       0       0       1         61239       -21.9649       15.638       not known       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                         | 78995 | -21.9543  | 15.7095 | not known |                     | 200 | 37    | 0   | 0   | 152   |
| 61239       -21.9649       15.638       not known       0       0       0       0       9         27861       -21.9664       15.6305       drilled       Usakos       200       24       0       0       9         27865       -21.9672       15.6341       drilled       Usakos       200       30       0       0       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78958 | -21.9631  | 15.7001 | not known |                     | 0   | 0     | 0   | 0   | 1028  |
| 27861       -21.9664       15.6305       drilled       Usakos       200       24       0       0       9         27865       -21.9672       15.6341       drilled       Usakos       200       30       0       0       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61239 | -21.9649  | 15.638  | not known |                     | 0   | 0     | 0   | 0   | 911   |
| 27865 -21.9672 15.6341 drilled Usakos 200 30 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27861 | -21.9664  | 15.6305 | drilled   | Usakos              | 200 | 24    | 0   | 0   | 933   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27865 | -21.9672  | 15.6341 | drilled   | Usakos              | 200 | 30    | 0   | 0   | 928   |

| 78959 | -21.9693  | 15.696   | not known |                          | 0   | 0  | 0     | 0   | 1064 |
|-------|-----------|----------|-----------|--------------------------|-----|----|-------|-----|------|
| 27863 | -21.96977 | 15.62645 | drilled   | Usakos - Kranzberg river | 150 | 49 | 26.54 | 20  | 920  |
| 27862 | -21.9705  | 15.6286  | drilled   | Usakos - Kranzberg river | 150 | 48 | 24.15 | 25  | 919  |
| 27859 | -21.9732  | 15.6207  | drilled   | Usakos                   | 200 | 40 | 0     | 0   | 923  |
| 27860 | -21.9748  | 15.6208  | drilled   | Usakos                   | 150 | 45 | 25.01 | 21  | 913  |
| 27858 | -21.9773  | 15.61552 | drilled   | Usakos - Kranzberg river | 164 | 36 | 15.3  | 36  | 908  |
| 27513 | -21.9805  | 15.6109  | not known | Usakos                   | 200 | 32 | 5     | 51  | 892  |
| 27857 | -21.98132 | 15.61029 | drilled   | Usakos - Kranzberg river | 150 | 42 | 11.32 | 55  | 896  |
| 27510 | -21.9833  | 15.60764 | drilled   | Usakos - Kranzberg river | 200 | 96 | 4.1   | 28  | 886  |
| 78993 | -21.9858  | 15.6034  | not known |                          | 0   | 0  | 0     | 5   | 886  |
| 78996 | -21.9862  | 15.63    | not known |                          | 0   | 0  | 0     | 0   | 896  |
| 78992 | -21.9915  | 15.6006  | not known |                          | 0   | 0  | 0     | 6.4 | 883  |
| 78989 | -21.9932  | 15.6067  | not known |                          | 0   | 0  | 0     | 0   | 900  |
| 78990 | -21.9934  | 15.6059  | not known |                          | 0   | 0  | 0     | 0   | 897  |
| 61238 | -21.9942  | 15.6522  | not known |                          | 0   | 0  | 0     | 0   | 1074 |
| 61679 | -22.002   | 15.6619  | not known |                          | 0   | 0  | 0     | 0   | 1160 |
| 81826 | -22.0087  | 15.676   | not known |                          | 0   | 31 | 28    | 0   | 1065 |